
0

•

TRS-80®
MODEL 4/4P .
TECHNICAL
REFERENCE

MANUAL

CAT. NO. 26-2119

TASOOS' Version 6.2.0 Operating System:
t 1984 Logical Systems.

Licensed to Tandy Corporation.
All Rights Reserved.

Model 4 4P Technical Reference Manual; Hardware Part:
£. 1985 Tandy Corporation.

All Rights Reserved.

Model 4 4P Technical Reference Manual: Software Part:
~ 1985 Tandy Corporation and Logical Systems.

All Rights Reserved.

Reproduction or use, without express written permission from Tandy Corporation of
any portion of this manual Is proh1b1ted. While reasonable efforts have been taken
m the preparation of this manual to assure its accuracy, Tandy Corporation as
sumes no liability resulting from any errors or omissions m this manual, or from the
use of the information contained herein.

TASDOS is a registered trademark of Tandy Corporation.

10 9 8 7 6 5 4 3 2 1

-

0

•

--
SECTION I

4 THEORY OF OPERATION

.,

Hardware 1

-

0

--

.,

SECTION I
1.1
1.1.1
1.1.2
1.1.3
1.1.4
1.1.5
1.1.6
1.1.7
1.1.8
1.1.9
1.1.10
1.1.11
1.1.12
1.1.13
1.2
1.3

SECTION II ..
2.1
2.1.1
2.1.2
2.1.3
2.1.4
2.1.5
2.1.6
2.1.7
2.1.8
2.1.9
2.1.10
2.1.11
2.1.12
2.1.13
2.1.14
2.1.15
2.1.16
2.1.17

SECTION Ill
3.1
3.1.1
3.1.2
3.1.3
3.1.4
3.1.5
3.1.6
3.1.7
3.1.8
3.1.9
3.1.10
3.1.11
3.1.12
3.1.13
3.1.14
3.1.15
3.1.16

Part 1 / Hardware

..•.................. 1

Model 4 Theory of Operation 3
Introduction ... 3

CPU and Timing .. 3

Buffering ... 3
Address Decoding ..•........•......... 3

ROM .. 7
RAM .. 7
Keyboard ..•.................. 7
Video ... 7

Real Time Clock ...•.................. 9
Cassette Circuitry ... 9

Printer Circuitry .. 9
1/0 Connectors ... 9
Sound Option ... 10
Model 4 1/0 BUS ... 13
Port Bits .. 16

... 19
Model 4 Gate Array Theory of Operation ... 21

Introduction .. 21
Reset Circuit ... 21
CPU•............................•...•................ • 21
System Timing and Control Register .. 21
Address Decode ... 28

ROM ... 36
R-... ~
Video Circuit 36
Keyboard. • 41
Real Time Clock ... 41
Line Printer Port ... 41
Graphics Port ... 41
Sound Port ...•................. 44
1/0 Bus .. . 44
Cassette Circuit .. 48
FDC Circuit .. 48
RS-232C Circuit ... 51

... ~
Model 4P Theory of Operation .. 57

Introduction .. 57
Reset Circuit ... 57
CPU•... 57
System Timing .. 57
Address Decode ... 60

ROM ... 60
RAM ... 71
Video Circuit ... 85
Keyboard .. 87
Real Time Clock ... 87

Line Printer Port ... 87
Graphics Port ... 91

Sound .. 91
1/0 Bus Port .. 91

FDC Circuit .. 93
RS·232C Circuit ... 98

SECTION IV 101
42 4P Gate Array Theory of Operation 103
4 2 1 Introduction 103
422 Reset C1rcu1t 103
423 CPU 103
424 System T1m1ng 103
425 Address Decode 105 -426 ROM 105
427 RAM 116
428 V 1deo Cir cu 1t 130
429 Keyboard 132
4 2 10 Real Time Clock 132
4 2 11 Line Printer Port 132
4 2 12 Graphics Port 136
4 2 13 Sound 136
4 2 14 t/0 Bus Port 136
4 2 15 FOC C1rcu1t 138
4 2 16 RS 232C C1rcu1t 142

SECTION V Chip Spec1f1cat1ons 147

INDEX

0

--
II

--

1.1 MODEL 4 THEORY OF OPERATION

1.1.1 Introduction

The TRS 80 Model 4 Microcomputer 1s a self contamed

desktop m1crocomputer designed not only to be completely
software compatible with the TRS 80 Model Ill, but to pro
v1de many enhancements and features System d1stmct1ons
which enable the Model 4 to be Model 111 compatible
include a 280 CPU capable of running at a 4 MHz clock
rate, BASIC operatmg system m ROM (14K). memory
mapped keyboard, 64 character by 16 line memory mapped

video display, up to 128K Random Access Memory, cassette
c1rcu1try able to operate at 500 or 1500 baud, and the
ab1hty to accept a variety of opt1ons These options include
one to four 5 1 /4 mch double density floppy disk dnves, one
to four five megabyte hard disk dnves, an RS 232 Serial
Communications Interface, and a 640 by 240 pixel high
resolution graphics board

1.1.2 CPU and Timing

The central processing unit of the Model 4 microcomputer
Is the Z80 A microprocessor - capable of running at either
a two (2 02752) or four (4 05504) MHz clock rate The main
CPU timing comes from the 20 MHz (20 2752 MHz) crystal

controlled oscillator, Y1 and 01 There Is an add1t1onal
12 MHz (12 672 MHz) oscIUator, Y2 and 02, whrch Is
necessary for the 80 by 24 mode of video operation The
oscillator outputs are sent to two Programmable Array

Logic (PAL) circuits, U3 and U4, for frequency d1v1s1on
and routing of appropriate timing signals

PAL U3 dIvIdes the 20 MHz signal by five for 4 MHz CPU
operation, by ten for a 2 MHz rate, and slows the 4 MHz
clock for the M1 Cycle (See Figure 1-3) U3 also d1v1des the
master clock by four to obtain a 5 MHz clock to be sent to
the RS-232 option connector as a reference for the baud
rate generator PAL U4 selects an appropnate 1 O MHz or 12
MHz clock for the video shift clock, and using dIvIder US
provides addItIonal tImIng signals to the video display cir

cuitry (See Fig 1-4)

Hex latch U18 Is clocked from the 20 MHz clock, and Is
used to provide MUX and CAS tImIng for the dynamic

Port Addr. (Hex) Read Function

memory circuits Also, with add1t1onal gates from U 16,
U19, U20, U31, and U32, this chip provides the wait cir
cuItry necessary to prevent the CPU from accessing video

RAM during the active portion of the display This is done

by latching the data for the video RAM and simultaneously
forcing the ZS0 CPU mto a "WAIT" state and ts necessary

to eliminate undesirable "hashing" of the video display
(See Fig 1-4)

1.1-3 Buffering

Low level signals from and to the CPU need to be buffered,
or current ampl1f1ed m order to drive many other circuits
The 16 address Imes are buffered by U55 and U56, which are

un1d1rect1onal buffers that are permanently enabled The
eight data Imes are buffered by U71 Smee data must flow

both to and from the CPU, U71 Is a b1 directional buffer
which can go into a three state cond1t1on when not m use
Both d1rect1on and enable controls come from the address
decoding section

The clock signal to the CPU (from PAL U3) Is buffered by
active pullup cIrcuIt 03 RESET and WAIT inputs to the

CPU are buffered by U17 and U46 Control outputs from
the zao (Ml*, RO*, WR*, MAEO*, and IORO*) are sent
to PAL U58, which combmes these mto other appropnate
control signals consistent with Model 4's architecture Other
than MREO*, which Is buffered by part of U38, the raw
control signals go to no other components, and hence require
no add1t1onal buffering

1.1-4 Address Decoding

The address decoding section Is d1v1ded into two sub
sections Port address decoding and Memory address
decoding

In port address decoding, low order address Imes (some
combined through a portion of U32) are sent to the address
and enable inputs of U48, U49, and USO U48 Is also enabled
by the IN* signal, which means that Is decodes port input
signals, while U49 decodes port output signals A table of

the resulting port map Is shown below

Wnte Function

FC FF Cassette In, Mode Read Cassette Out, resets
cassette data latch
Output to Printer
Drive Select latch

FDC Data Reg

F8
(1) F4
(1 I F3
(1 I F2
(1 I F1

FB
F7

Read Printer Status
reserved

FDC Data Reg
FDC Sector Reg
FDC Track Reg

Hardware 3

FDC Sector Reg
FDC Track Reg.

::c
Q)

a. :
cil ...

TIMING

.__.

KEY
BOARD

f1

CPU

. •

CONTR -

f-w
(/)
w
a:

t! CRTC

y l
ADDA MUX
BUF -

u. VID ::)
RAM DATA ~ co

BUF

ROM -
CASS

110

ADDRESS
DECODE

~
0

...J 0
0 ()
a: w
f- 0 a: <! z RS232

RAM 0 f- 0 a:
BOARD 0 <! () 0

4 0 0 CONN - <! ~

----KEY BUF - ~
~

110 KEY BUF £

BUS .

1 BUF

FIGURE 1-1. MODEL 4 BLOCK DIAGRAM

0

.
VID
OUT ,.....

•

,---
---:

~ GRAP.
CONN.

~

~

- DISK
CONT.
CONN.

~

•

.

£ .

~

~

~ ~

-

AL
SK

I 1 I F0 FOC Status Reg. FOC Command Reg.

EC - EF Resets RTC Int. Mode Output latch

121 EB Rcvr Holding Reg, Xmit Holding Reg.

121 EA UART Status Reg. UART/Modem control

121 E9 - reserved - Baud Rate Register

121 EB Modem Status Master Reset/Enable

- UART control reg.

E4 - E7 Read NMI Status Write NMI Mask reg.
EO - E3 Read INT Status Write INT Mask reg.

13) CF HD Status HD Command

13) CE HD Size/Drv/Hd HD Size/Drv/Hd

13) CD HD Cylinder high HD Cylinder high

131 cc HD Cylinder low HD Cylinder low

13) CB HD Sector Number HD Sector Number

13) CA HD Sector Count HD Sector Count

13) C9 HD Error Reg, HO Write Precomp.

13) CB HD Data Reg. HD Data Reg.

13) Cl HO CTC channel 3 HD CTC channel 3

(3) C6 HD CTC channel 2 HO CTC channel 2

(3) C5 HD CTC channel 1 HD CTC channel 1

13) C4 HD CTC channel 0 HD CTC channel 0

131 C2 -C3 HD Device IO Reg. - reserved •

13) Cl HO Control Reg. HD Control Reg.

(31 co HD Wr. Prot. Reg, - reserved -

94 - 9F - reserved - • reserved -

141 90-93 - reserved - Sound Option

151 BC -BF Graphics SeL 2 Graphics Sel. 2

88 CRTC Data Reg. CRTC Data Reg.

8A CRTC Control Reg. CRTC Control Reg.

89 CRTC Data Reg. CRTC Data Reg.

88 CRTC Control Reg, CRTC Control Reg.

84 - 87 - reserved - Options Register

' .,,; 151 83 • reserved - Gra. X Reg. Write

151 82 - reserved - Gra. Y Reg. Write

151 81 Graphics Ram Rd. Graphics Ram Wr.

151 80 - reserved - Gra. Options Reg. Wr

Notes: 11) Valid only if FOG option is installed

121 Valid only if RS-232 option is installed

131 Valid only if Hard Disk option is installed

141 Valid only if sound option is installed

151 Valid only if High Resolution Graphics option is installed

.,

Hardware 5

Following is a Bit Map of the appropriate ports in the Model 4. Note that this is an "internal" bit map only. For bit maps of the
optional devices, refer to the appropriate section of the desired manual.

Model 4 Port Bit Map

Port D7 D6 D5 D4 03 DZ D1 DO

FC · FF Cass Cassette

{READ) data {Ml RROR of PORT EC I data
500 bd 1500 bd

FC - FF (Note, also resets cassette data latch) - cassette

{WRITE) X X X X X X - data out

FB - FB Prntr Prntr Prntr Prntr X X X X

{READ) BUSY Paper Select Fault X X " X

FB - FB Prntr Prntr Prntr Prntr Prntr Prntr Prntr Prntr
{WRITE) D7 D6 D5 D4 D3 D2 01 DO

EC - EF (Any Read causes reset of Real Tiriie Clock Interrupt)

EC - EF X CPU X Enable Enable Mode Cass X
{WRITE) X Fast X EX 1/0 Altset Select Mot On X

EO- E3 X Receive Receive Xmit 10 Bus RTC C Fall C Rise
{READ) X Error Data Empty Int Int Int Int

EO - E3 X Enable Enable Enable Enable Enable Enable Enable
{WRITE) X Rec Err Rec Data Xmit Emp 10 Int RT Int CF Int CR Int

90-93 X X X X X X X Sound
{WRITE) X X X X X X X Bit

84 · 87 Page Fix Upr Memory Memory Invert 80/64 Select Select
{WRITE) Memory Bit 1 Bit 0 Video Bit 1 Bit 0

Memory mapping is accomplished by PAL U59 in the Basic 16K or 64K computer. In a 128K system, PAL U72, along with the
select and memory bits of the options register, also enter into the memory mapping function.

Four memory maps are listed below. Memory Map I is compatible with the Model Ill. Note that there are two 32K banks in the
64K system, which can be interchanged with either position of the upper two banks of a 128K system. The 128K system has
four moveable 32K banks. Also note, in the Model 111 mode, that decoding for the printer status read (37E8 and 37E9 hexadeci
mal) is accomplished by U93 and leftover gates from U40, U46, U5l, U54, U60, and U62.

•
•

0000 - 1 FFF
2000 - 2FFF
3000 - 37FF
37E8 - 37E9
3800 - 3BFF
3COO - 3FFF
4000 - 7FFF
4000 - FFFF

Memory Map t - Model Ill Mode

ROM A {BK)
ROM B {4K)
ROM C {2K) - Less 37E8 - 37E9
Printer Status Port
Keyboard
Video RAM (Page bit selects 1 K of 2K)
RAM {16K system)
RAM {64K system)

Hardware 6

-

C

•

•

Memory Map II

0000 - 37FF
3800- 3BFF
3C00 - 3FFF
4000 - 7FFF

RAM (14K)
Keyboard

Video RAM

RAM (16K) End of one 32K Bank

8000 - FFFF RAM (32K) Second 32K Bank

Memory Map Ill

0000 - 7FFFF

8000 - F3FF
F400- F7FF
F800- FFFF

RAM (32K)

RAM (29K)
Keyboard
Video RAM

End of One 32K Bank

Second 32K Bank

Memory Map IV

0000- 7FFF
8000 - FFFF

RAM (32K)
RAM (32K)

One 32K Bank

Second 32K Bank

(See Figure 1-2 for 128K Maps)

1.1.5 ROM

The Model 4 Microcomputer contains 14K of Read Only
Memory (ROM), which is divided into an SK ROM (U68), a
4K ROM (U69), and a 2K ROM (U70). ROMs used have
three-state outputs which are disabled if the ROMs are
deselected. As a result, ROM data outputs are connected
directly to the CPU data bus and do not use data buffer
U71, which is disabled during a ROM access.

ROMs are Model Ill compatible and contain a BASIC opera
ting system, as well as a floppy disk boot routine. The enable
inputs to the ROMs are provided by the address decoding
section, and are present only in the Model 111 mode of
operation.

1.1.6 RAM

Three configurations of Random Access Memory are avail
able on the Model 4: 16K, 64K, and 128K. The 16K option
uses 4116 type, 16K by 1 dynamic RAMs, which require
three supply voltages (+12 volts, +5 volts, and -5 volts).

The 64K and 128K options use 6665 type, 64K by 1 dyna
mic RAMs, which require only a single supply voltage (+5
volts). The proper voltage for each option is provided by

jumpers.

Dynamic RAMs require multiplexed incoming address lines.
This is accomplished by ICs U63 and U76. Output data

from RAMs is buffered by U64. With the 128K option, there
are two rows of the 64K by 1 RAM ICs. The proper row is
selected by the GAS* signal from PAL U72 .

1.1.7 Keyboard

The Model 4 Keyboard is a 70-key sculptured keyboard,
scanned by the microprocessor. Each key is identified by
its column and row position. Columns are defined by address

lines AO - A7, which are buffered by open-collector drivers
U29 and U30. Data lines DO • 07 define the rows and are
buffered by CMOS buffers U44 and U45. Row inputs to the
buffers are pulled up by resistor pack RP 1, unless a key
in the current column being scanned is depressed. Then,
the row for that key goes low.

1.1.8 Video

The heart of the video display circuitry in the Model 4 is
the 68045 Cathode Ray Tube Controller. The CRTC allows
two screen formats: 64 by 16 and 80 by 24. Since the 80
by 24 screen requires 1,920 screen memory locations, a
2K by 8 static RAM is used for the Video RAM. The 64
by 16 mode has a two-page screen display and a bit in the
options register for determining which page is active for
the CPU. Offset the start address of the CRTC to gain
access to the second page in the 64 by 16 mode.

Addresses to the video RAM are provided by the 68045
when refreshing the screen and by the CPU when updating

the data. These two sets of addresses are multiplexed by
U33, U34, and U35. Data between the CPU and Video
RAM is latched by U6 for a write, and buffered by U7 for
a read operation.

Hardware 7

111, ,,,,, ,,
l• ,~, I lllf

"''~ ". ,,,.

r~ 7

"
f<l}r < lK

", K(YHOlll<U Ill
I v, IK

¾I l St lH

'"'" ·•1>••
O K ~,,tt

""'"'

00 \U(1,IATI

60 snit"
Kl YIIUlll<C> .. v,m, ,,,v,u

J KI«\

•~KI A'

KtYIIOARU 1K

I '"'' i•

>(LI Sh< l 0
,., t[7K V•l>t'--' l<A~I

f)(< P, l' llOlt \IIIIU

"'

6411 17811 l<IIM
lllPANSIOfl,

J2K f<A,

f ·~ l}>IK l<A"
I" ? ,, •

1111"'" J

FIGURE 1-2. RAM MEMORY

Hardware 8

n
I

F • ~ I ''

'

"''
J~~ t A\

Sto I SI«•

lltUPMtM Mllt11 '1\1110

J/K l<A ''"

"''

St< SH) ti l>

u, "\

.,.. l2lK HAM

lltPIINSll>f\,

-

C

•

--

.,

During screen refresh, the data outputs of the Video RAM
(ASC 11 character codes) are latched by US and become the
addresses for the character generator ROM (U23) In cases
of low resolution graphics a dual 1 of 4 data selector (U9)
1s the cell generator with add1t1onal buffering from Ul0

The shift register U 11 inputs are the latched data outputs
of the character or cell generator The shift clock input
comes from the PAL U4, and 1s 10 1376 MHz for the 64
by 16 mode and 12 672 MHz for 80 by 24 operatton The
serial output from the shift register later becomes actual
video dot information

Special timing 1n the video c1rcu1t 1s handled by hex latch
U2 This includes blanking (originating from CRTC) and
shift register loading (onginatmg from U4) Add1t1onal
video control and t1mmg functions, such as sync buffering,
1nvers1on selection, dot clock chopping, and graphics disable
of normal video are handled by miscellaneous gates in U12,
U13, U14, U22, U24, and U26

1.1.9 Real Time Clock

The Real Time Clock circuit m the Model 4 provides a 30

The 1500 baud cassette read circuit 1s compatible with the
Model 111 cassette system The mcommg signal 1s compared
to a threshold by part of U 15 U 15's output will then be
either high or low and clock about one half of U39, depend
mg on whether 1t is a nsmg edge or a falling edge If
interrupts are enabled, the setting of either latch w1tl gene
rate an interrupt As 1n the 500 baud circuit, the firmware
decodes the interrupts into the appropriate data

For any cassette read or wnte operation, the cassette relay
must be closed m order to start the motor of the cassette
deck A wnte to port EC hex with bit one set will set latch
U42, which turns on transistor Q4 and energizes the relay
K 1 A subsequent wnte to this port with bit one clear
will clear the latch and de energize the relay

1.1.11 Printer Circuitry

The printer status Imes are read by the CPU by enabling
buffer U67 This buffer will be enabled for any input from
port FB or F9, or any memory read from location 37E8
or 37E9 when m the Model Ill mode For a llstmg of bit
status, refer to the bit map

Hz (1n the 2 MHz CPU Mode) or 60 Hz (1n the 4 MHz CPU After the pnnter dnver software determines that the printer
Mode) interrupt to the CPU By countmg the number of 1s ready to receive another character (by reading the status),
interrupts that have occured, the CPU can keep track of the the character to be printed 1s output to port FB This latches
time The 60 Hz vertical sync signal from the video circuitry the character mto U66, and s1multaneouly fires the one shot
1s d1v1ded by two (2 MHz Mode) by U53, and the 30 Hz at U65 to provide the appropriate strobe to the pnnter
pm 1 of U51 1s used to generate the interrupts In the 4

MHz mode, signal FAST places a logic low at pm 1 of U51, 1.1.12 1/0 Connectors
causing signal VSYNC to trigger the interrupts at the 60 Hz

rate Note that any time interrupts are disabled, the accuracy Two 20 pm single mllne connectors, J7 and JS, are provided
of the clock suffers for the connection of a Floppy Disk Controller and an

1.1.10 Cassette Circuitry

The cassette write circuitry latches the two LSBs (DO and
Dl) for any output to port FF (hex) The outputs of these
latches (U27) are then resistor summed to provide three
discrete voltage levels (500 Baud only) The firmware toggles
the bits to provide an output signal of the desired frequency
at the summmg node

There are two types of cassette Read circuits - 500 baud and
1500 baud The 500 baud c1rcu1t ,s compatible with both
Model 1 and Ill The input signal 1s amplified and filtered
by Op amps (U43 and U28 Part of Ul 5 then forms a
Zero Crossing Detector, the output of which sets the latch
U40 A read of Port FF enables buffer U41, which allows
the CPU to determine whether the latch has been set, and
simultaneously resets the latch The firmware determines
by the t1mmg between settings of the latch whether a logic
"one" or "zero" was read m from the tape

RS 232 Communications Interface, respectively All eight
data Imes and the two least s1gn1f1cant address Imes are
routed to these connectors In add1t1on, connections are
provided for device or board selection, mterrupt enable,
interrupt status read, interrupt acknowledge, RESET, and
the CPU WAIT s1gnal

The graphics connector, J10, contains all of the above mter
face signals, plus CRTCLK, the dotclock signal, a graphics
enable input, and other t1mmg clocks which synchronize
the graphics board with the CRTC.

The 1/0 bus connector, J2, contains connections for all
eight data Imes (buffered by U74), the low order address
lmes (buffered by U73), and the control Imes (buffered by
U75) IN*, OUT', RESET*, Ml*, and IORQ* In add1t1on,
the 1/0 bus connector has inputs to allow the dev1ce(s).
connected to generate CPU WAIT states and interrupts

Hardware 9

The sound connector, J11, contains only four connections:
sound enable (any output to port 90 hex), data bit DO,
Vee, and ground.

1.1.13 Sound Option

The Model 4 sound option, available as standard equipment
on the disk drive versions, is a software intensive device. Data

"' 4 @~-o· c:::J c, 0
.,..ci: ~

~ ... D
Q. •

□~ a: <I)

o::i
Oz D ►-

u,
cw zc
;!:~ + C2

0

1s sent out to port 90H, alternately setting and clearing
data bit DO. The state of this bit is latched by sound board
U1 and amplified by sound board 01, which drives a pie
zoelectric sound transducer. The speed of the software
loop determines the frequency, and thus, the pitch of the
resulting tone.

0

8709403
0

COMPONENT LOCATION/CIRCUIT TRACE, SOUND BOARD #8858121

3

J11

Dij

BLK

SEN
WHT

2) l O+SV
RED

.~

+5V

4

p

2
D Q

U1
LS74

3 i'i

C

+5V

R2
6 3.6 KQ

+SV +SV

R1
1.8 K fl

QMB-6
TRANSDUCER

01
2N3906

R3
120n

SCHEMATIC 8000188, SOUND BOARD #8858121

Hardware 10

-

C

•

._, \._) 9)

20 2752 MHz

10M = 10 1376MHz

RS232 7 I L

PCLK (2MHz)

i

f PCLK (4MHz) _j I r
-- /M1

/MREQ n OP CODE FETCH / / ~F

PCLK (4MHz) .__ __ G)

REFRESH

G)-----

PIGURE 1-3. TIMING OF U3 & CPU

OCLK

H
I

17 I I I I I I I I I L -J

K -
LOADS_) L.J LJ

:i:
LOADM-i___j LJ LJ

.,
a. :e .,
al !DOT -,_,

TCRTC

/XADR?

/SHIFT

LOADS

~~ LOADM L....J
0 LJ
0
::i: I /SHIFT
=

FIGURE 1-4. TIMING OF U4

f) 0 t

' l) - '

I T1 I T2 I TW I T3 I I T1 I T2 I TW I T3 I
PCLK n n n n n n...n.n.ru

TCRTC 1 ' I ~
:c
D> /VIDEO --i_____r a.
~
D>

'
, ~ IZWR CD

~

"'
IZRD

IPWAIT

/LATCH DAT I u-
IWID I I

--~-

~
2MHz 4MHz

FIGURE 1-1. CIIU VIDEO ACCESS TI-

1.2 MODEL 4 1/0 BUS

The Model 4 Bus 1s designed to allow easy and conv&n1ent

mterfacmg of 1/0 devices to the Model 4 The 1/0 Bus
supports all the signals necessary to implement a device com
pat1ble with the Z 80s 1/0 structure That 1s

Addresses
ArJ to A7 allow selection of up to 255t input and 256
output devices 1f external 1/0 1s enabled

tPorts S(JH to 0F FH are reserved for System use

Data
DBf'Ji to 087 allow transfer of 8 bit data onto the pro
cessor data bus tf external 1/0 1s enabled

Control Lines
a IN* - Z 80 signal specifying that an mput 1s m pro

gress Gated with 10 RO
b OUT* - Z 80 signal spec1fy1ng that an output 1s in

progress Gated with IORO
c RESET* - system reset signal
d IOBUSINT* - input to the CPU signaling an inter

rupt from an 1/0 Bus device 1f 1/0 Bus interrupts

are enabled
e IOBUSWAIT* - mput to the CPU wait lme allow

mg 1/0 Bus device to force wait states on the Z 80

1f external 1/0 Is enabled
f EXTIOSEL * - mput to CPU which switches the

1/0 Bus data bus transceiver and allows an INPUT

mstructIon to read 1/0 Bus data
g M 1 * - and 10 RO* - standard Z 80 signals

The address !me, data lme, and control Imes a to c and e tog
are enabled only when the EN EX 10 bit m EC Is set to a one

To enable 1/0 mterrupts the EN IOBUSINT bit m the CPU
IOPORT E(J (output port) must be a one However, even 1f
1t 1s disabled from generating interrupts the status of the
IOBUSINT* lme can still read on the appropriate bit of CPU
IOPORT E0 (onput port)

See Model 4 Port Bit assignment for port 0 FF 0 EC and
0E0 on pages 14 and 15

The Model 4 CPU board is fully protected from "foreign
1/0 devices" In that all the 1/0 Bus signals are buffered and
can be disabled under software control To attach and use an

1/0 device on the 1/0 Bus certam requirements (both hard
ware and software) must be met

For input port device use you must enable external 1/0 de

vices by wntmg to port 0ECH with bit 4 on In the user soft

ware This will enable the data bus address lines and control

signals to the 1/0 Bus edge connector When the input de
vice Is selected the hardware will acknowledge by asserting

EXTIOSEL * low This switches the data bus transceiver and
allows the CPU to read the contents of the 1/0 Bus data

Imes See Figure 1 6 for the timing EXTIOSEL * can be gen

erated by NANDing IN and the 1/0 port address

Output port device use Is the same as the mput port device m
use m that the external 1/0 dev1ces must be enabled by writ
mg to port 0ECH with bit 4 on m the user software - m the
same fashion

For either mput or output devices, the IOBUSWAIT* control
lme can be used m the normal way for synchron1zmg slow
devices to the CPU Note that smce dynamic memones are
used m the Model 4, the wait lme should be used with cau
tIon Hold mg the CPU ma wait state for 2 msec or more may

cause loss of memory contents since refresh Is mh1b1ted during
this time It Is recommended that the IOBUSWAIT* line be
held active no more than 500 µsec with a 25% duty cycle

The Model 4 will support Z 80 mode 1 interrupts A RAM
Jump table ts supported by the LEVEL 11 BASIC ROMs and

the user must supply the address of h,s interrupt service
routine by wntIng this address to locations 403E and 403F
When an interrupt occurs the program will be vectored to

the user supplied address 1f 1/0 Bus interrupts have been
enabled To enable 1/0 Bus interrupts the user must set bit
3 of Port 0E0H

Hardware 14

-

C

-

Input or Output Cycles

T, ,, T." T, T,

\ _ _ r-----'I - -

-
Af A7

IOAO"

- ex PORT ADDRESS

-

I'\ I
RD•

I

DATA BUS

'"
- ----- -----'=r-c..· ----- ---~--------- ----- ---

WR•

' ,
DATA BUS

,
' '

OUT ,

Input or Output Cycles with Wait States.

T, T, T • T. ,,

)
Af A7

DATA 80$

RO•

WAIT•

DATA BUS OUT

WR• ~-+---
+EXTIOSEL"

+Co,nclCNnt -fl IOAO" onty °" INPUT cycl•

FIGURE 1-6. 1/0 BUS TIMING DIAGRAM

Hardware 15

READ
CYCLE

WAITE
CYCLE

AEAO
CYCLE

! WR>TE
CYCLE

1.3 MODEL 4 PORT BITS

Name:
Port Address:
Access:

WRNMIMASKREG.

0E4H
WRITE ONLY

Bit 7 = EN INTRO; 0 disables Disk INTRO from generating
an NMI.
1 enables above.

Bit 6 = ENO RO; 0 disables Disk ORO from generating an
NMI.
1 enables above.

Name:
Port Address:
Access:

RDNMISTATus·

0E4H
READ ONLY

Bit 7 = Status of Disk INTRO; 1 = False, 0 = True

Bit 6 = Status of Disk ORO; 1 = False, 0 = True

Bit 5 = Reset" Status; 1 = False, 0 = True

Name:
Port Address:
Access:

MOD OUT

0ECH
WRITE ONLY

B,t 7 = Undefined

Bit 6 = Undefined

Bit 5 : O ISWAIT; 0 disables video waits, 1 enables

Bit 4 = ENEXTIO; 0 disables external 10 Bus, 1 enables

Bit 3 = ENAL TSET; 0 disables alternate character set,
1 enables alternate video character set.

Bit 2 = MODSEL; 0 t:!nabtes 64 character mode,

1 enables 32 character mode.

Bit 1 = CASMOTORON; 0 turns cassette motor off,
1 turns cassette motor on.

Bit 0 = Undeftned

~ame:
Port Address:
Access:

RDINTSTATus·

0rnH
READ ONLY

NOTE: A 0 1nd1cates the device is 1nterrupt1ng.

Bit 7 = Undefined

Bit 6 a RS-232 ERROR INT

Bit 5 a RS232 RCV INT

Bit 4" RS232 XMIT INT

Bit 3 = IOBUS INT

Bit 2 a RTC INT

Bit 1 a CASSETTE 11500 Baud) INT F

Bit 0 a CASSETTE 11500 Baud) INT R

Name: CASOUT ..
Port Address: 0FFH
Access: WRITE ONLY

Bit 7 = Undefined

Bit 5 = Undefined

Bit 4 = Undefined

Bit 3 = Undfmed

Bit 2 = Undefined

Bit 1 = Cassette output level

Bit 0 = Cas~ette output level

Hardware 16

-

C

--

Name
Port Address
Access

WRINTMASKREG"

0E0H
WRITE ONLY

Bit 7 = Undefined

Bit 6 = ENERRORINT 1 enables RS 232 interrupts on par
1ty error, frammg error, or data overrun error

0 disable above

B,t 5 ° ENRCVINT,
full mterrupts,

0 disables above

enables RS 232 receive data register

Bot 4 ° ENXMITINT enables RS 232 transmitter holding

register empty mterrupts,
0 disables above

Bit 3 = ENIOBUSINT, 1 enables t/0 Bus interrupts,
0 disables the above

811 2 = ENRTC, 1 enables real time clock interrupt,
0 disables above

Bit 1 = ENCASINTF, 1 enables 1500 Baud falling edge mter
rupt,

0 disables above

B,t 0 ° ENCASINTR
rupt,

enables 1500 Baud rising edge mter

0 disables above

Name
Port Address
Access

CAS IN"

0FFH
READ ONLY

Bit 7 = 500 Baud Cassette bit

Bit 6 = Undefmed

Bit 5 = DISWAIT (See Port 0ECH def1n1t1on)

Bit 4 = ENEXTIO (See Port 0ECH defrn1t1on)

Bit 3 = ENALTSET (See Port !JECH defin1t1on)

Bit 2 - MOOSE L (See Port !JECH def1n1t1on)

Bit 1 = CASMOTORON (See Port /JECH defm1t1on)

811 0 = 1500 Baud Cassette b,t

NOTE Reading Port OFFH clears the 1500 Baud Cassette
interrupts

Hardware 17

Name
Port Address
Access

ORVSEL.

OF4H

WRITE ONLY

811 7 = FM· ;M FM G selects single density,
1 selects double density

B,t 6 = WSGEN, 0 ~ no wait states generated,
1 = wait states generated

Bit 5 = PRECOMP, G =- no write precompensat1on,
1 = write precompensat1on enabled

811 4 = SOSE L, (] selects side (J of diskette,
1 selects side 1 of diskette

Bit 3 = Drive select 4

Bit 2 = Drive select 3

Bit 1 = Drive select 2

81t 0 = Drive select 1

--

0

-

' ' .,

SECTION II

4 GATE ARRAY THEORY OF OPERATION

Hardware 19

' _,)

\ .,

2.1 MODEL 4 GATE ARRAY THEORY OF
OPERATION

2.1.1 Introduction

The following discusses each element of the main board of
the Model 4 Gate Array block diagram (see Figure 2-1) In
each case the mtent 1s understanding the operation on a
practical level suff1c1ent to aid in isolating a problem to the
fa1hng compQnent

2.1.2 Reset Circuit

Figure 2-2 shows the Reset circuit for generation of reset on
power up and when the reset switch Is pushed on the key
board The time constant determined by RS and C25, ,s
used to allow the system to stabilize before tnggenng a one
shot (U63) with an approximate pulse width of 70 m1crosecs
When the reset switch 1s pushed, the input pin 1s brought to
ground and fires the one shot when the switch Is released

A second point to be noted 1s the signal POWAS* which 1s
used to reset the dnve select latch m the FDC cIrcuIt

2.1.3 CPU

The central processing unit of the Model 4 microcomputer Is
a 280A microprocessor. and will run In either 2 or 4 MHz
mode All of the output Imes of the ZSOA are buffered The
address Jones are buffered by two 74LS244s (U2 and U3
with the enable tied to ground), the control hnes by a 74F04
(U27). and the data Jones by a 74LS245 (U28 with the ena
ble tied to BUSEN* and the dIrectIon control tied to
BUSDIR")

2.1.4 System Timing and Control Registers

Control Registers

The first of these registers Is the WRINTMASKREG (U34)
This Is only part of the register as this function Is shared
with the Gate Array 4 5 The main register contains ATC
ENCASINTFALL AND ENCASINTRISE The Gate Array has
the interrupts for the RS232C Interface and the 1/0 bus in

terrupts and a duphcate of the ATC

The second Is the OPREG (U33) which contains the added
options of the Model 4 for video and Memory mapping

The last of the registers Is MODOUT (U53) and Is also read
able through the CASSIN (U52) buffer It contains the Cas
sette motion controls, and the FAST control for Model 4

CPU Clock and RS232 Clock

Most of the tImIng generation for the board Is shown m Fig
ure 2-5 The Gate Array 4 1 1 Is the basis tor this tImmg as
It produces the 20 2752 MHz clock and then dIvIdes this
down to produce most of the other clocking functions used
on the board

The first clock that IS produced IS PCLK (pm 23) which
dnves the CPU It IS a d1v1de by ten of the 20 2752 MHz In
the 2 MHz mode and a dIvIde by 5 m the 4 MHz mode The
transItIon from one mode to the other Is without glitches and
both modes are 50 percent duty cycles

Note that the signal that controls this mode also controls the
Real Time Clock cIrcuIt described later.

As a simple d1V1de by four of the fundamental 20 2752 MHz,
the RS232CLK on pm 22 of U9 provides the basic clock to
the RS232C circuit

Video and Graphics Clocking and Timing

The timing for both of these functions may be viewed as one
smce they must operate synchronously and the same timing
must be generated for both The addItIonal signals sent to
the Graphics Board allow It to mamtam synchronIzatIon by
knowing the phase relation of the signals sent to both of
them To further understand the circuit of Figure 2-5 notice
the PLL Module (US) This chip develops a 12 672 MHz sIg•
nal which Is phase locked to the 1 2672 MHz input on pm 5
and Is a dIv1de by 16 of the primary 20 2752 MHz clock
This proVtdes the Gate Array 4 1 1 with two clocks to dnve
the video display and the graphics circuits, 1 o 1376 MHz tor
64 character display, and a 12 672 MHz for the 80 character
display

The following dIscussIon will consider both the 64 and 80
character displays to be the same, the difference being the
primary frequency and not the phase relation or function of
the signals generated

The reference clock for the tImmg Is OCLK (U9-15) and the
other clocks that are produced for the video output are de
nved from this clock (DOT' at U9-17 Is a phase shift of
DCLK and Is provided as an option for the the dot clock for
vanat,ons m delay paths m the video section) U9 then gen
erates SHIFT' (pm 21). XADR7' (pm 20), CRTCLK (pm 19),
LOADS' (pm 18), and LOAD' (pm 16) for the proper timing
for the four video modes In add1t1on for the Graphics Board
to synchronize with this tImmg H (pm 14). I (pm 13), and J
(pm 11) are fed to connector J12 See Figures 2-6 and 2-7
for the tImmg diagrams tor video clocks generated by Gate
Array 4 1 1

Hardware 21

:r .,
a.
i
iil
Rl

f

T

A

TIMING 1---1, CPU C

D

A= ADDRESS LINES
C = CONTROL LINES
0"' DATA LINES
•r = TIMING

CA.SS t,I 1/0

I
~

m

-
*

CRTC
AND

""
VIDEO

~ CIRCUIT

VIDEO

,..(3 RAM ..

RAM ...
·it

I/0
DECODE --

A - A
ro
w

C ~ C
~
C>

D m D
._£. ROM

~

-0

Figure 2-1. -4 Gatcr Put11111tcll ...

.
VIDEO
PORT

SOUND lru
RS232

PORT ~ ,..... ~ SERIAL
CHIP

• • DISK I
GRAPHICS

i. ;;OLLr BOARD PORT ii CHIP

•
LINE
PRINTER PO.RT .

·ouF I -
ro - EXTERNAL w
~ I/0 BUS
~
C> PORT ro -

-~

'

l

t
r:l

(~)

U41 J LSl4

5-[>o-6

l7E
CRI RB U41 r----- IB~NC R61 IN4148 I00K LSl4

E-- 20 750n 3 -[>o- 4
RESET
SWITCH C21 .LC 25 ..L C22

I"22pF r22~F r-•22pF

,s< I
J II

IIJ

POWRS
{sH I l

2

+5V

C70
I000pF

rr
14 15

U63
74LSl23

3

R66
160K

RESET NC 13-~

4 RESET (SHl.2,3,~

'
+IV.__._ ___ _.

Figure 2-2. Reset Circuit

(Page 4 of Schematic)

:i: .,
a.

!
!l1

,-
'"

(SH 2 3..4

f

... ..,
T " ~"l"1 " . " 4 7K 4 7K ,,,

16 INT

17 l>IM

.,,
'" "'' . " ,., -- ~~ .rT

~ U- 3 j!WAIT 24 WAIT w.i'"T
'

l
Al 31

A2 32

" ' ..
., '

A 14 4

A 15 5

" "' All I
Al2 2

!.) RESET uiiiE'sfi' l Al3 3

" ' A1 31

SPCLK
.--6"fLOCK ,. ..

" "n

"
MIi

IOREO

•
""'

T ..
~ ... ,., ,.,

;~ -{>-' , .. ,., 11 V3
74LS244

'

' " ,. .,
'

.,
,, .,
• ..
' "

PAl5 " " '
,,.

' '"
"' 6 " •
PA10 "
PAI I ';~ -t>-PA12
PA13

13 U2 ,., 11 74LS244

,., • •

'
,.

'
.,,

• .,,
' . "
• .,,
"

..
• .,

' "
~
" ~---"~'
' -{>- • IOREQ

, ___ ,_o

""
, ___ ._,

74F(14 ' """ 12~H

0Pe-0P7

--~ D 14~-
01 15~
02 12_Q!t
03 8 ---2!- -
04 7 ____Q_P·
o g --~r-
06 10____Q_P-

~ '

"

:1
--.i
-n.1 --,
-•7 07 13--°'------

HALT ,e--,c
~ 23--,C

.J,.

Figure 2-3. CPU
(hge 1 of Schematto>

0

,. .. _ .. ,.,

OPi

"' {~ ' '" 0,

"' "' • "" , 74LS~5

!J op~
"

@:]) ffii I
~iffiw I

" " " " " " " "

0=8--A
l=A--8

-~

co-,

i

,-, 0" 07

- WIUNTMASKR[C [5'<(2l.,

$HI J 4 S RESET

.,, l , ..
"D " c•2

oa,
{Sl«Zl$,") OUT ~ " '

'

.,

NC-4 ' ' ,--,C
'<C- 3 ,--,C
N(-11 "'' •--,C

"' '
74L5'?4

'
~N-r~

' [N(.l,SINTFALL
SH

M
. s

ENCA~lNTRl~E
SH

' ' SH

' ~
·'

SH • ~ " -
"' " •2~

" !S FIX

" " 16 MBIT I

" " 19 MBIT0

" ""
9~ " ' 74LS273
6 80/64 SH ; ' " • ' ' ,.

' 2.li!..L

" I>
*

" " " " "" ,-
" y " • -- " • ' 7<1LS244

• ,. ' .
" ,_ ,.

' -·' "
" ·s '. ' ' • " '. "'' " 74LSl74 --,, " 13. ,!

'
'

'
'

' '

" ,s

"

CASSOATIN I

FAST

OJSWA~T

ENEKT!<> "
ENALTSET

MOOSEL ,,

-
--,_

" " "
MOTON c .. .l

.J • .,,
'

Figure 2-4. Control Registers

(Page 2 of Schematic)

+5VI- 8e'-.---~.LC29

' ' ' ,_
•

~•2·

,. * l~F

4 I I* "
RTC K

TIMING

PCLK

22 R 232CLK SH
ZI SH FT

~e KAOR7 (SH 2)

SH

"' "
LOADS

I " "'
.,,

"" f" L< oc· K

""
H

' " ' '
~ J l!i!V

"" 10~f

. ' ' i I- I -NC

1 I 2i;1£"11iz I ~3-NC
s.

PLLMOO
l-4 -NC

6-NC
CMIQ

"'
1-lf'-NC (I -67.?MHi)

' 11-NC

12-NC

HJ-NC
14-NC

"' .
' +

12 611

Figure 2-5. CPU, RS232C, and Video
Timing Generation

(Page 3 of Schematic)

Hardware 25

1--lc19
T I •~F

-!-

SH •
~

H " SH <)
s~

CAS'°DATIN3
SH •

~

liM, 12M

DCLK

DOT*

H -- -- -- --

I _J i j i I i I i I i r
:c J .,
a
:!,

MAi .,
al

"' 0)
SHIFT*

LOADS* LJ LJ LJ
LOAD* LI LI u

CRTCLK

XADR7*

..... M. -.. Timing 64 x 16 Mode 80 I M

f 0 I)

,, '-._) w>

1/'IM, 12M

DCLK
DOT*

H
LJ LJ L..J LJ L..J _J \

I_j ' • ' j ' • ' I ' r
J

J: .,
a. MA/'! ,. .,
cil SHIFT*
I\) ...,

LOADS*
LJ LJ

LOAD*

CRTCLK

XADR7* _____ _,

........ 7.

DRAM and Video RAM Timing

The Video RAM and ORAM timing share the t1mmg delay
ltne (USO) This IS done by 'OR"1ng the two signals GRAS•
and AINPRG· at U39 to get the signal STOEL' This IS pos
sible because the signals VIDEO and MREQ or MCYCEN
are gated in to mask off the signals that are not desired.

Since the CRTC and the CPU are operating independently
and at different clock rates, when the CPU wants to access
the Video RAM the two must synchronize with each other
This 1s accompllshed when a video access 1s decoded
WAIT .. 11 1s pulled low, when 1t 1s determined whether the ac
cess Is a read or wnte and the correct cycle of the CRTC
clock 1s present, the actual access can begin, hence
AINPRG* 1s generated and WAIT* 1s released

From this point the actual sequence depends on whether a
read or a wnte 1s done On a read the address 1s enabled to
the RAM, the delay through USO to VLATCH" when data IS

latched tn the 74LS373 where the CPU can pick-up the data
at the completion of this cycle On a write the sequence Is
more complex The address Is enabled to the RAM, the out
put IS disabled (VRAMDIS" at U7-12), wnte IS delayed With
respect to the address (DLYWR" at U60-6) and the buffer on
the data lines Is enabled (VBUFEN' at U60-S), then after a
delay the write Is cutoff to end the cycle for the RAM
(ENovw· at US0-10) For the tImIng diagram ol the Video
RAM CPU access see Figure 2-8

Address in hex
MAP I* MAP II MAP Ill

0000-37FF 0000-F3FF
0000-37E7
37E8-37E9
37EA-37FF
3800-3BFF 3800-3BFF F400-F7FF
3C00-3FFF•• 3C00-3FFF .. FBOO-FFFF
4000-7FFF
4000-FFFF 4000-FFFF

DRAM Timing

The DRAM tImmg Is shown m Figure 2-9 At the begInmg of
the CPU cycle the address hnes settle-out first and are,
therefore, decoded to allow maximum access speed (see
Address Decode) With the generation of MREQ, U39-11
generates PMREQ and enables U42 and gates this with the
type of cycle to develop GRAS• (U30-6), RASO' (U30-3),
and RAS1 • (U30-11) GRAS" Is then "OR"ed wllh AINPRG
as mentioned above The tImIng from this point Is very
straight forward With RASO· and RAS1· generated next
MUX (UB0-12) ,s built to switch the addresses to memory
then GCAS Is generated and clocks fhp-flop U31 with
MCYEN on the J term This Is done to make sure thts 1s a
true memory cycle Then tf this Is an M1 cycle VLATCH·
clocks at U31 and cuts off PMREQ" at U39 to end the cycle
For tImIng diagrams of the memory interface see Figures 2-
10 to 2-12

2.1.5. Address Decode

This section Is d1v1ded mto two parts, the memory address
ing and the 1/0 addressing This separation Is a reflection of
the separate mappmg of memory and 1/0 of the ZS0A itself
For reference of both sections, see Figure 2-13

Memory Address

The memory map for the Model 4 Is shown m Table 2-1 and
Is best described as an option overlay In the sense that at
each step of addItIonal memory, the new options overlap the
previous and the new options are added on Moreover, the
added options have no effect on previous levels and are In
vIsIble at those levels.

Function
MAPIV of block

0000-FFFF RAM (64K)
ROM
Pnnter Status
ROM
Keyboard
Vtdeo RAM
RAM (16K)
RAM (64K)

Table 2-1

• Only map available on 16K machine
•• Page bit ts used to select 1 K of 2K Video RAM

The decoding of the addresses for the memory map de
scribed above Is done for the most part by U5 The only de
code not done by U5 Is the hne printer memory status port
at 37E8 and 37E9 hex These needed add1tIonal address
Imes hence the decode LPADD as an input to U5

Hardware 28

--

0

, .. \.) 9)
RD CYCLE WR CYCLE

Tl T2 I Tw T3 Tl T2 Tw I Tw T3 Tl

,nnn
2,0M

PCLK* J I I r \ , L..r7,_J L..r7,_J \ I \ I \ I , r --A,0-Al5

MREQ

RD

WR

CRTCLK

::i:
XADR7*

II> a. VIDEO*
== II>
cil
I\) VIDEO
"'

AINPRG*

VWAIT*

VRAMOIS

DLYVWR*

VBUFEN*

VLATCH*

U36-l

Figure 2-8. Video W OflU A1UU 1IMIIII

~:;~,•;•;;:::::::::::::::J= uH +sv :: ~ .f>,_,•e••·--- "[:]" v~• o 9 --••

.S7< 0 0----r''"'""M"O[______ 0~

,------s-+-1----t-,---i:f~ic-~---_+f=-=-~fz'_,u-_·_-_-_-_-~~·-:·::::__:-,.:~

,.
'" '

I
..
., ..
~~

. ,
.. sv'

'
""

.,

"" :6-6 ----+~---•:_,··,pi;, •----------"·· ." ""-------~-'"~-•~AMOIS . '

r :i:>. 1.
"" ~--- -1.Sll4 12 ~ UH

,(>o-, -- ll~II (Vh :06 -,----'""""'""----'------<'<-' '" '

I

l_,~ "'' -t>-_, ' "" ...,I ~:D-6
" '-' -'-----< "" ' L> ~,, -

~'-- ,2 ~ t::ILJ ~: .
- "" m ..

11•stHO 'D-· 2.7n ,u.59 ~

"" m ""
IIASEH "D-' '

,-n
'

RAS 1 CE:I) .
7
"

VLAf""H

' o•-•· "" + 2 '

•'0£C

r-·:u- Pl,ll!Hi

·~
I

MT 'h

: T ,.,

o~--J'D
.,
, ~-1: -,s

0:J)

- ,,
" r '
'

GtAS

Figure 2-9 Video RAM . and DRAM T' · . ,ming Circuit.

(Page 2 of Schematic)

Hardware 30

--

0

-

if
I
al
~

' Waveform
Input

Symbol

'.lust 8P

Va',d

\",\\._~ ci--anqp

F•om H 10 L

///Ill Change
;,am L to H

Tl I
' I

l .,,;RMS

Output

W1U Be
'Jalid

W,H Chanqe

From H 10 L

Will Change
From L 10 H

T2

\

Wtveform

Svmbol

cxxxxxxxx
___;--

I

lnpu1

Don 1 Care
.-\nv Charige

Pl'!,m111ea

T3

\

Output

Chang,ng
S1a1e

,Jnknown

1-1,qh
1,..,..oeoanre

I

IIJ

T4

\ I (2 or 4 MHz) PCLK _j
A0'-Al5 __ __,._ _________ ,L... __________ J..

Ml

MREQ

RD

RFSH -------------------------'
PMREQ ________ __,

RAMRDEN ____ __,

PRAS* -----------,

RASEN0'* or-----~
RASENl*

RAS0'* or----------RASl*
MUX*

CAS*

DRA~-DRA7 XXXXXXXXXXXI ROW ADD. X COL, ADD, X REFRESH ADD. X
MD0'-MD7 VALID DATA

Figure 2-10. M1 Cycle Timing

Tl I T2 I T3

PCLK _j \ / , 1 , I L
A_0'-Al5 -~--------====::::x::=

MREQ

RD

PMREQ

::c RAMRDEN ll>
a
~ PRAS* ll>
al

"' "' RASEN,0* or
RASENl*

RAS,0* or
RASl*

MUX*

CAS*

DRA,0-DRA7 XXXNJ)NIJ. ROW ADD. I COL. ADD.)lltfJJYJl

MD,0-MD7 (VALID DATA)~-------

Figure 2-11. Memory Read Cycle Timing

f' 0 I)

' ~-) IIJ
Tl I T2 I T3

I
_J \ I \ I PCLK \ I L

A,0-Al5

MREQ

WR

PMREQ

RAMWREN
:t
ll> a. PRAS* :;;
ll>
ii! RASEN.0* or w w RASENl*

RAS,0* or
RASl*

MUX*

CAS*

DRA.0-DRA7 llN9ltlI ROW ADD. X COL. ADD. xxxxxxxx
MD.0-MD7 w WRITE DATA)

Figure 2-12. Memory Write Cycle Timing

SHI 4

.,, .. ,
+
~ +OV

I

I
~

(SHI 34 5 Al Al5

rs;:r-n RFSH

1~MI

ft

"' L50A

~''O " T'n"ARO SHJ4'

"
+5' L_ T 40 OUT

SH!2\

15- GRCl'O.GE _,, !11 <SH4) ~:!:! 16 - ENPAGE -••
T 17- OESPAG(" L ~ SEL ! 18 _

" MI 19
_,,

'" ' ,-
2 - AODRESS -33 "' "" 3- DECODE MAPA15

'" 3 32

' . 4 2, I
26 8USEN

'" ' M

' * ,. RAMttU~N

'" 3 U5 AMBUSOii'i 6
_,,

SH ' LPRO .r-36- N4P " '" 3

" _,, "" SIXTH --, "°"' SIXTN -28 '" '
" LPAOO '""

VIOEn

"' ,. 23
KEYBo

SH 4
A4 •· f-2'

ROMA

'" ' 9 •22 """" '" 'J

"' , .. . ,, " . .,. ".
20

* LPAOO

U6
A7

'D A6 A765
4 6

A5 5

U7 U6
A4 "P _,D A2 10 8 NA421 10 8 .,

' u• __J"
A9

"D A9

' " A3 2

••
"'

Flg1!19 2·13. Address Decode
tpage 2 of Schematic)

0

~

,_,
Y7r" 7 CASSlN (FC)

!11 5< f " 9 LPIN (F 8)
~

-f""' < r U59 Y51""1ll IF4) NC

~ 74LS Y4r-11 _
,..,

.A.• 3 "' "'':=I {EC)

'" 4
A3

2 -~ Y2 13
(£8)

'" 5
A2

' A YI 14 M
1£4)

'" 5
ver1s NT T u 1£0)

'" "
CASSOuf {FC) 'sH4 6 ' Y7r-7

OUT ,~, LPOUT (F 8\

' ,.,. " 9 '" ~ h. (F 4)
U43 Y5 10

(F0) S!!......1
74L S " "

flTSKOUT
'" 5 A4 fii'ili@I {EC)

3 C 138 Y31""12

" 2 ' Y2r-13 RS2320UT 1E8)

'" " .,
' A " "

wRNMfMASKRtG {E 4)

'" " Y01""15 N M K ,,.,
SH(2),5l

t-7 B00r (9C) NC A7 £ _
' n

~ 5-< i"f Y6
(98)

9 (94)NC
~4-< I' " ,-,.--NC!'E'll (90) ~

U44 Y4 t"I I 51, 4
74LS Y3 1""12 LI (SCI SH 3)

A4
3

_ C 138 Y2 13 V H p (88) SH 31
A3 z _

' " 14 OPREG (841 -
AZ

1
_

A ,0 t-15 G°m0 \HI 5H3)

-~

--,.

, .. ~" , .. ~

1-~ .. -~,-7
I
e-----~
I "'" " " I

IHJ~1l lk I

<,IK <II"•' 1,,1,,sj1<!'110Af<0 11(:
.,,.,,! '·" / v,utn iK

""~ ,

"" M.\(SS

(<H~1' >•,,o ,,,
<•>k s•~II •:

,-- --7
r,;:::-,-

"·"' ~ .. ·

-----·------

,(u SHU •0 o,
•OHIIUl T St All•

bOK ~Ysn~·

Kl ~1<(,<,1<t.,,. v,ot" ~•uvE D

1 1 o,

"' "

"''
l'tl(h.O.~•

,1" ,u,,
•f\<)I(/K \IIC,[U f<A~•

........ u
1 >HI• I .. • Pl1' "!HI(•

' '"

bh t/hl(l<A•,•

I xst,•,su,r.

------,

/
,o ' '

.,,,, .. 1(,.

&•K 1n1< 11AM

lK .. H•~•OK

Table 2-2. RAM Memory

Hardware 35

I llk ~--·

i_K(Y00/11,l>
--"

J/K f A~1

•SUI Sll<)• <O 1

MK .O.ll h.o.~•

HSH~'

J/K 114~•

''"

~"
'

,.
•O I I

lfKUPM!M Mll,TI Ml\110,

11 1 0

,0 1 0

<0 l I

.,.i~ 1.'8k < • .1.V

I "-'' .. '-S <1!\

llK '-'A''

1/K l,A.,

&l,K 1181< 11AM

(KPANSIO!IJ

)]K 11AM

1/0 port Address

The Port Map decoding Is accomplished by three 74LS138s
(U43,U44, and U59) These ICs decode the low order ad
dress hnes (AO - A7) from the CPU and decode the port
being selected The IN" signal and our signal are used 1n
the decode for U59 and U43, but U44 Is a pure address de
code and, therefore, needs to be gated with IN", our, or
IOREQ· later For a complete 1/0 map see Table 2-3

2.1.6. ROM

The A ROM IS enabled by the decode as appropriate by the
address logic described above, and 1s addressed 1n a simple
straight forward fashion The enable for the 8/C ROM 1s also
s1m1larly accomplished, however, the address has a Jumper
option available This option 1s designed to allow for testing
of the board logic in the factory When Jumper 1s moved from
JPS to JP7, the ROM IS m the test mode, wtth the options
appearing on the screen

2.1.7 DRAM

The ORAM timing was described earlier m the timing sec
tion, the actual DRAM Is contained m two banks of eight
each U65 to U74 and USS to U92 They are arranged m or
der of data bits DO through D7, U65 and U85 being DO,
through U74 and U92 being D7 Note In Figure 2-15 that the
two banks are different with Jumper options m the lower
bank, these options are for the possible use of 16k three
voltage parts When Jumpered as shown m Figure 2-14 the
bank Is Ident1cal to the second bank and Is for using 64k
DRAMS With both banks filled there Is 128k available to the
user

2.1.8 Video Circuit

Video Modes

The Model 4 has many video options available through
hardware and software Software has control of inverse
video on a character by character basis by turning on IN
VIDE Note that this 1mphes the available number of charac
ters Is now 128 since the most s1grnf1cant bit of the character
code m memory Is now used to mdIcate inverse character
SImIlarly, an alternate character set can be enabled by turn
mg on ENALTSET This enables a new 64 characters m
place of the last 64 characters, that Is, the Kana set m place
of the game set An option not available to software Is an
enhanced character, which moves characters down one row
m their charactei block to make an inverse character appear
within the inverse block and not on the edge of the block
This Is done by moving Jumper JP11 to JP12 As an exam
ple of a combination of hardware and software options avail
able rn the video ,s the over1ay, which not only requires the
Graphics Board to be installed, but also software to enable
the graphics data and the video data with text at the same
time

The Model 4 also has an option tor either 64 character or 80
character wide screen The 64 character screen Is compati
ble with the Model Ill and displays 16 Imes The 80 charac
ter screen displays 24 hnes In add1t1on each of these has a
double width mode These options are controlled by two bits,
MODSEL and 8064 which provide the screens as shown m
the followIng table

8064

0
0
1
1

MODSEL

0
1
0
1

Table 2-4

Video Screen Size

64 X 16
32 X 16
80 X 24
40 X 24

With this mformatIon of the options available to the user we
can now view the actual operation of the cIrcuIt with the final
obJectIves m mind and see how they are achieved For the
rest of this section all references will be made to Figure 2-
16 The first task to be accomphshed would be the screen
refresh and 1hIs Is done by the CRTC or 68045 (U11) which
will generate the addresses continuously on its address
Imes Then to allow the CPU access to the same memory
the address hnes are multiplexed at U12, U14, and U15 on
opposite phases of the CRT clock The CPUs access tImIng
Is then handed by the tImmg cIrcuIt descnbed earlier

The data bus of the RAM (U16) IS a two way bus With the
RAM as a source or destination on all accesses, the video
gate array (U17) ,s the dest1nat1on on the screen refresh half
of the cycle, the 74LS373 (U36) Is the destInatIon on a read
of the RAM by the CPU. and the 74LS244 (U35) IS the
source on wntes to the RAM

The video gate array then gates the RAM data INVIDE, and
ENALTSET to deterrmne the ROM addressing for these two
options and CHRADD to the 74LS283 (U13) which takes the
row address from the 68045 and adds a zero to the row ad
dress or a mmus one to form the character enhanced mode

The data out of the ROM Is then sent back to the gate array
where It Is then changed to a senal stream of data which Is
synchronized with the data that would come from the graph
ics board, GRAFVID The signal CL 166 Will InhIbIt the data
out of the senal register and the signal ENGRAF enables
the graphics data, hence, If both are enabled the effect Is an
overlay The output data Is sent to U20 pin 9 where It Is
gated with one of two phases of the dot clock, then after
being filtered to lower the R F I 11 Is output to the sweep
board

Hardware 36

C

Model 4 Port Bit Map

Part D7 D6 D6 D4 03 D2 D1 DO

FC - FF Cass Cassette

(READ) data (MIRROR of PORT EC I data

--.. 500 bd 1500 bd

- FC - FF (Note, also resets cassette data latch) cass. cassette

(WRITE) X X X X X X out data out

F8-FB Prntr Prntr Prntr Prntr X X X X

(READ) BUSY Paper Select Fault X X X X

F8- FB Prntr Prntr Prntr Prntr Prntr Prntr Prntr Prntr
(WRITE) D7 D6 D5 D4 D3 D2 Dl DO

EC - EF (Any Read causes reset of Real Time Clock Interrupt)

EC - EF X CPU X Enable Enable Mode Cass X

(WRITE) X Fast X EX 1/0 Altset Select Mot On X

EO - E3 X Receive Receive Xmit 10 Bus RTC C Fall C Rise
(READ) X Error Data Empty Int Int Int Int

EO- E3 X Enable Enable Enable Enable Enable Enable Enable
(WRITE) X Rec Err Rec Data Xmit Emp 10 Int RT Int CF Int CR Int

90-93 X X X X X X X Sound
(WRITE) X X X X X X X Bit

~~

84 -87 Page Fix Upr Memory Memory Invert 80/64 Select Select

_,/
(WRITE) Memory Bit 1 Bit 0 Video Bit 1 BitO

.,
Table 2-3. 1/0 Port Map

Hardware 37

""
~·~.~ ~5-q____,,r

~

••
" " " .. .,

" • .,
" "'

'
0-------i + 5\1 '"

••
" .. ,, .. ., ..
" .. ., ,
"

' ' •
' •
' ' '
' 2 ,,
,.
"

' ' • , ,.
• ' -

' -' '
' ;
'
,
'
'

,.
'

MCM68
A364
ROMB/C

¼

"'

1,1(1,1168

11.368
ROMA

¼

""

,.

,. . ,. '" "' " "' " .. "'
" "
" " '"
24---l ... 5\I

127

,
"' ,.

" "
" "' .. •
" "'
" "'
" "' 24--,+5\I

127

Figure 2•14. ROM Circuit

(Page 1 of Schematic)

Hardware 38

--

0

,r •

_)

.,

a, 00 ,- ,1,,n,...., N

l~- l
... "' ... "' ... "'"'"'""' ... "' ... "'""' -,1 "i,t,t,"i,1,-

~-----•
~----,-
~---- ... "'~~ ----,~- ..,..,,., ---- ::,~ ..

---~ £

+--+++--H-+---•-
.++-1--+--1--,

•• (I)"':: ... ,. .
•s

•· a, .., :: ... , ..
•s

.. - "':: . ..
::, ::; ~

•---+.
•------1~' -

' I

.++-Ir+---• • .. ~ ~ • •--t-+---+--~1--++-t-t----,
;~ (1)--t-+-+-.-t-+-+--t~ ---

.+----•
'. ,.

• • ---1-+--.
•-

~---------------------f---+-<>6- ~

•t--=-•·"· r~,
"' <N

.... <1/ ... N(l),n-,-.

~
...... ~ a,

>- ► ,- ,. -_,- - ~ ~ , ------
~{j~ajaj~ C

.
i
>

Hardware 39

I

i

..
:, .. " ~ ;: u ..
:; E .,
< r.
IC " C Ul

.,; -0 - .., •
Ii "' .,

I!! "' .. - :, !!:. ~

"' N
1 ;;: e

1 •

• '

§lj
,-,.

LJ
•

;

,
•

~

Ii
, 01'f'" :;;

••

,. -
9'1' :!:

" . . .
...

t "'.., ... -

r

~;? "'-+--~
~~ ;!: ~-+-~

;! ~
' .

~ : ::l;: ~ :tGI ;S ;e

~ ;;It, 1:,7 ~ "'C

:

··l ;:;;:

~i lg
0 1·

1; ,

,

It
-

"' l:C: ltl

r
"S :§' " ~ ai 0 E 0 a,

C
.. ~ ..,

" > <I)

<O -0 - "' ,;, .,
I!! 0) .. ::,

!!:. l

, ,
Ii

\ I ~ -•.
" i
"'

Hardware 40

2.1.9 Keyboard Pin Number Signature

The inter1ace to the keyboard is a matrix composed of ad-
dress lines in one direction and data lines 1n the other. The 1 DO
address lines have two open collector buffers (U26 and U40) 2 01
on the output to the keyboard. 3 D2

4 D3

j
The input is pulled-up with an 820 ohm resistor and is then 5 D4
fed into two CMOS Inputs (USS and U56) which act as a 8 OS
driver on data lines. 7 D6

8 D7
2.1.10 Real Time Clock I GEN'

10 DCLK
The Real Time Clock circuit in the Model 4 provides a 30 Hz 11 AO
(in the 2 MHz CPU Mode) or 60 Hz (in the 4 MHz CPU 12 A1
Mode) interrupt to the CPU. By counting the number of inter- 13 M
rupts that have occured, the CPU can keep track of the 14 J
time. The 60 Hz vertical sync signal from the video circuitry 15 GRAPVID
is divided by two (2 MHz Mode) by U10 and the 30 Hz at 18 ENGRAF
pin 9 of U46 is used to generate the interrupts. In the 4 MHz 17 DISBEN
mode, the signal FAST places a logic low at pin 4 of U10, 18 VSYNC
causing the signal VSYNC to pass through U46 at its normal 11 HSYNC
rate and trigger interrupts at the 60 Hz rate. Note that any 20 RESET"
time interrupts are disabled. the accuracy of the clock 21 WAIT"
suffers. 22 H

2.1.11 Line Printer Port 23
24 IN"

The printer status lines are read by the CPU by enabling 25 GND

buffer U108. This buffer will be enabled for any input from 2111 +5

port Fa or F9, or any memory read from location 37E8 or 27 N!C

37E9 when in the Model Ill mode. For a listing of bit- status, 2111 CL166

refer to the bit map. 28 GND
30 +5

------, After the printer driver software determines that the printer is 31 GND

ready to receive a character (by reading the status), the 32 +5

-I character to be printed is output to port F8. This latches the 33 GND

character into U107, and simultaneously fires the one-shot 34 +5

U63 to provide the appropriate strobe to the printer.

2.1.12 Graphics Port
Table 2-5

The graphics port on the Model 4 is provided to attach the
optional high resolution graphics board and provides the
necessary signals to interface not only to the CPU (such as
data lines, address lines, address decodes, and control
lines), but also the signals needed to synchronize the output
of the Video Circuit and the Graphics board and control to
provide features such as overlay.

\ .,

Hardware 41

Figure 2-17. Keyboard

(Page 4 of Schematic)

~· " ..
<..:w)s'•u•''---------- II"~'~ rar . ,---!~""''""'''---

Figure 2-18. RTC

(Page 4 of Schematic)

Hardware 42

'" '

•
"

"
' 0 U55

filCl4~2B

0

...
T
"

9-MC

-------'''''"'""'' ·~

-

j

\ .,

U62
~ LS00
~12~
~ LPRQ 13-c/....__/ 11

SH 2

-

I 1•

$1:r1-
M;--14
~7 UIQl8

o<
07

'
o•
01
o•
03
04
OS
06
07

12 74LS244

9

U6 I I 19

-{>-•-=:j LS

' 4

I

I

8
7
7

8
4 I

I ' II

Ul07
74LS374

Q

2

17

4

" 6 ,,
8
II

2
5
19

16
6
9
15
12

Cl6
68pF

'fil +sv
68pF

R60
c1e

4 7K 68pF

F84
32

F83 ,.
F82 29

F820 NIA

CJElll~ FAULT
19

D2e
c::::JFBI§ UNIT ~EL D2s
CJFBl7 OUT PAPER D23
c:,FBl6 BUSY D21

F88 c::, PDO ---<=>-----"""--------ID,
F89 c::, PO I

F915 = PD2 ~::=~tt::==~Ds D1
F810 Cl

PD3

FQ13 P04 ~=----':~----~D9
= F811 = PDS

f814 Cl PD6

FRI? Cl
P07

>----'-"''--------<DI I
--c:>----~'------<D"
'-<=>---__.!:!"'----------<Dl5

"--=--....c.,'-'--------------lD"

+c2•4+sv~:,'.

200

a
+sv

7 l i~:~ 8D FB21
-:- 63 a 5 ----9 i0--~==-'--~D1

._---19 B 74LSl23 0 12--NC

r---------C>E VEN
II

LPOUT '------1+ SV

_L - 2-24,
-:- 27,34

Figure 2-19. Printer Circuit

(Page 4 of Schematic)

+Sv

T
4

U46 -.J!L__ 2 UIS Q 5 --NC Rl9

~-IOR-Ro___ D-LS3Z LS74 4 7K
~ 4 6 --- 3 Ct< Q 6--~fV'ol'--,

~5 L--'<J,,-_J

I

+5V ~

Figure 2-20. Sound

(Page 4 of Schematic)

Hardware 43

R43
21n112w

SPI

J6

2.1.13 Sound Port

The sound c1rcu1t 1s compatible with the optional sound
board on the older version of the Model 4 and works 1n a
sIm1lar fashion Sound Is generated by setting and cleanng
data bit zero on successive OUTs to port 90H The state of
DO IS latched in U18 which IS amphf1ed by 02 to drive the
speaker (SP1)

2.1.141/0 Bus Port

The Model 4 Gate Array Bus Is designed to allow easy and
convenient interfacing of 1/0 devices to the Model 4 The l/O
Bus supports all the signals necessary to implement a de
vice compatible with the Z-80s 1/0 structure That 1s

Addresses

AO to A7 allow selection of up to 256 input and 256 output
devices 1f external 1/0 1s enabled

Ports 80H to 0FFH are reserved for System use

Data

080 to D87 allow transfer of 8-bIt data onto the pro
cessor data bus d external l/O 1s enabled

Control Lmes

a IN* - Z-80 signal spec1tymg that an input Is m
progress Gated with IORQ

b our - Z-80 signal specifying that an output Is m
progress Gated with IORQ

c RESET* - system reset s,gnat

d IOBUSINT• - input to the GPU s1gnahng an inter•
rupt from an 1/0 Bus device It l/O Bus mterrupts are
enabled

e IOBUSWAIT· - input to the GPU wait hne allowing
1/0 Bus device to force wait states on the Z -80 1f
external l/O Is enabled

EXTIOSEL • - input to GPU which switches the 1/0
Bus data bus transceiver and allows an INPUT m
structIon to read 1/0 Bus data

g M1 • - and IORQ· - standard Z-80 signals

The address !me, data hne, and control hnes a to c and e to
g are enabled only when the ENEXIO bit Is set to a one

To enable 1/0 interrupts, the ENIOBUSINT bit in the GPU 10·
PORT E0 (output port) must be a one However even tf 1t Is
disabled from generatmg interrupts the status of the IOBU
SINr hne can still read on the appropriate bit of GPU 10·
PORT EO (Input port)

See Model 4 Port Bit assignment for OFF OEG and 0EO

The Model 4 GPU board Is fully protected from foreign l/O
devices m that all the l/O bus signals are buffered and can
be disabled under software control To attach and use an 1/0
device on the 1/0 Bus, certain requirements (both hardware
and software) must be met

For mput port device use, you must enable external 1/0 de
vtces by writing to port 0ECH with bit 4 on m the user soft
ware This will enable the data bus, address Imes, and
control signals to the 1/0 Bus edge connector When the in
put device ,s selected, the hardware will acknowledge by as
serting EXTIOSEL * low This switches the data bus
transceiver and allows the CPU to read the contents of the I/
0 Bus data hnes See Figure 2-21 for the tImIng EXTIO
SEL• can be generated by NANDing IN and the 1/0 port
address

Output port device use Is the same as the input port device
in use, tn that the external 1/0 devices must be enabled by
wntIng to port 0ECH with bit 4 on m the user software - in
the same fashion

For either input or output devices, the IOBUSWAIT* control
lme can be used in the normal way for synchrornzmg slow
devices to the CPU Note that smce dynamic memories are
used m the Model 4, the wait hne should be used with cau•
tIon Holding the CPU In a wart state for 2 msec or more
may cause loss of memory contents since refresh Is InhIb
Ited during this time It Is recommended that the IOBUS
WAIT" hne be held active no more than 500 msec with a
25% duty cycle

The Model 4 wIl1 support Z-80 mode 1 interrupts A RAM
Jump table Is supported by the LEVEL II BASIC ROMs and
the user must supply the address of his interrupt service
routme by writing this address to locations 403E and 403F
When an interrupt occurs, the program will be vectored to
the user supphed address d 1/0 Bus interrupts have been
enabled To enable 1/0 Bus interrupts, the user must set bit
3 of Port OEOH

The actual ImplementatIon Is shown In Figure 2-22 The data
Is buffered in both directions using a 74LS245 (U101) The
addresses are buffered with a 74LS244 (U102) and the
control hnes out are buffered by a 74LS367 Note that RE
SET* Is always enabled out, this Is to power-up reset any
device or clear any device before enabling the bus structure
This prevents any user from tying-up the bus when enabhng
the port In an unknown state

Hardware 44

-

0

-

Input or Output Cycles.

., ., T.
.

~ \ \

At A7

j IORQ•

-
X PORT ADDRESS

-

\
RO'

DATA BUS

- >---------- =r-c.: - >----------
WR'

'\

DATA BUS /
OUT

'\

Input or Output Cycles with Wait States.

T, ., ,.·

Af A7

DATA BUS

RO'

DATA BUS OUT

WR'

tEXTtOSEL •

\ • tCo,nc.ctem wrth IORQ• only on INPUT cycl•.

Figure 2·21. 1/0 BUS TIMING DIAGRAM

Hardware 45

Ta

\

/

I

IN

.,. ____
,_ ____

,

T. T,

T,

' ,

AEAO
C't'ClE

WRITE
CYCLIE

READ
CYCLE

i
WRITE
CYCLE

~......,f---

00-07

00
A.0-A7

DI

02
03
04
05
o_
07

A0
Al
A2
A3
A4
A5
A6
A7

+5V

9

8
7

6
5
4

3
2

R54
1s0n

17

15
13

II
2
4

6
8

R56
47K

Ul04
LSl6

~s-O)o--6 s

R53

+5V Ll•0: 7K

LSl6

~ I {I::xr 2 10

~: SH 2 3 IOR 2

---T 12

NC--14

U41

A~

U101
74LS245

19

y
Ul02

74LS244

19

-{>--
Ul03

74LS367

LSl4 ~

2 -o(J- I U105

II X00

12
XO I

X02
5 13

X03
7

X04
9

14
15
16 X05 II

X06
13

X07
15

17
18

EXTIOSEL 43

3
XA0

" 5
7

XAI
19

XA2 21

9
XA3

23
18

XA4
25

16
XA5 27

14
XA6

29
12

XA7 31

XMI
47

XIN
33

XOUT
35
49
37

Ul04 LS02

7416 .r-)::rs ll.WAIT 41
~-- -~W~A~ITc 4 ...,,./(l_ 3 -- 4 ___Jr 5 -~=--1---~--- -
SHI 35 """--lJ U104

7416 XINT 39

·◊·+-r-~- -(~;;~:--X!UJN!!JTLi---::--1>---- RSB R57 D

45
SH 5 ISO(l 150J"l NC -RESET :s

7
~

+5Vr-•• •
+5Vr

Figure 2·22. 1/0 Port

(Page 4 of Schematic)

Hardware 46

.._r-- DZ-50 EVEN

--

J4&J5

0

-

.,

Data Bit Function
DO Selects Onve 0 when set*
D1 Selects Drive 1 when set*
D2 Selects Drive 2 when set*
D3 Selects Drive 3 when set*
D4 Selects Side 0 when reset

Selects Side 1 when set
D5 Write precompensat,on

enabled when set dis-
abled when reset

D6 Generates WAIT 11 set
D7 Selects MFM mode 11 set

Selects FM mode If reset

•0n1y one of these bits should be set per output

Hex D !hp-flop U79 (74L174) latches the dnve select bits,
side select and FM* MFM bits on the nsmg edge of the con
trol signal DRVSEL • Gate Array 4 4(U76) IS used to latch
the Wait Enable and Write precompensatIon enable bits on
the ns1ng edge of DRVSEL" The ns1ng edge of DRVSEL0

also triggers a one-shot (Internal to U76) which produces a
Motor On to the disk drives The duration of the Motor On
51gnal Is approximately three seconds The spindle motors
are not designed for continuous operation Therefore, the in
active state of the Motor On signal Is used to clear the Dnve
Select Latch, which de-selects any drives which were previ
ously selected The Motor On one-shot Is retnggerable by
simply executing another OUT mstructIon to the Dnve Select
Latch

Wait State Generation and WAITIMOUT Logic

As previously mentioned, a wait state to the CPU can be m1-
tIated by an OUT to the Dnve Select Latch with D6 set Pin
10 of U76 will go high after this operation This signal Is in
verted by 1 /4 of U96 and Is routed to the CPU where It
forces the ZBOA into a wait state The ZBOA wlll remain In
the wait state as long as WAIT* Is low Once Init1ated, the
WAIT* will remain low until one of five cond1t1ons Is satisfied
If INTRO, DAO, or RESET inputs become active (logic
high), 1t causes WAIT" to go high which allows the 280 to
exit the wait state An internal timer on U70 serves as a
watchdog timer to insure that a wait condItIon will not persist
long enough to destroy dynamic RAM contents This internal
watchdog timer logic will hmIt the duration of a wait to 1024
1-'-sec, even If the FDC chip should tail to generate a DRQ or
an INTRO

If an OUT to Drive Select Latch Is InitIated with 06 reset
(logic low). a WAIT Is still generated The internal timer on
U70 wtll count to 2 which will clear the WAIT state This al
lows the WAIT to occur only dunng the OUT InstructIon to
prevent violating any Dynamic RAM parameters

NOTE This automatic WAIT will cause a 5 to 1 µ.sec wait
each time an out to Dnve Select Latch Is performed

Clock Generation Logic

A 16 MHz crystal oscillator and Gate Array 4 4 (U76) are
used to generate the clock signals required by the FDC
board The 16 MHz oscillator 1s implemented internal to U76
and a quartz crystal (Y2) The output of the oscillator 1s dI
v1ded by 2 to generate on 8 MHz clock This 1s used by the
FOG 1773 (U75) for all internal t1m1ng and data separation
U76 further dIv1des the 16 MHz clock to dnve the watchdog
timer cIrcuIt

Disk Bus Output Drivers

High current open collector drivers U96, 94 and 93 are used
to buffer the output signals from the FDC circuit to the disk
drives

Write Precompensation and
Write Data Pulse Shaping Logic

All wnte precompensatIon ts generated internal to the FDC
chip 1773 (U75) Wnte Precompensat1on occurs when WG
goes high and wnte precompensatIon Is enabled from the
software ENP IS multiplexed with ADY and IS controlled by
WG at pin 20 of U75 Wnte data 1s output on pin 22 of U75
and ,s shaped by a one-shot (1/2 of U98) which stretches
the data pulses to approximately 500 nsec

Clock and Read Data Recovery Logic

The Clock and Read Data Recovery Logic Is done internal
to the 1TT3 (U75)

Floppy Disk Controller Chip

The 1 TT3 Is an MOS LSI device which performs the
functions of a floppy disk formatter/controller In a sin
gle chip Implementation. The following port addresses
are assigned to the Internal registers of the 1 TT3 FDC
chip:

Port No.

FOH

F1H
F2H
F3H

Function

Command/Status
Register
Track Register
Sector Register
Data Register

Hardware 47

2.1.15 Cassette Circuit

The cassette wnte circuitry latches the two LSBs (DO and
01) for any output to port FF (hex) The outputs of these
latches (U51) are then resistor summed to provide three dis
crete voltage levels (500 Baud only) The firmware toggles
the bits to provide an output signal of the desired frequency
at the summing node

There are two types of cassette Read c1rcu1ts - 500 baud
and 1500 baud The 500 baud circuit 1s compatible with both
Model I and Ill The input signal ,s amplified and filtered by
Op amps (U23 and U54) Part of U22 then forms a Zero
Crossing Detector, the output of which sets the latch U37 A
read of Port FF enables butter U52 which allows the CPU to
determine whether the latch has been set, and simultane
ously resets the latch The firmware determines by the tim
ing between settings of the latch whether a logic "'one" or
'"zero" was read m from the tape

The 1500 baud cassette read circurt ,s compatible with the
Model Ill cassette system The incoming signal Is compared
to a threshold by part of U22 u22·s output will then be
either high or low and clock about one-half of U37, depend
mg on whether It Is a nsIng edge or a falhng edge If inter
rupts are enabled, the setting of either latch will generate an
interrupt As m the 500 baud circuit, the firmware decodes
the interrupts mto the appropriate data.

For any cassette read or write operation, the cassette relay
must be closed m order to start the motor of the cassette
deck A wnte to port EC hex with bit one set will latch U53,
which turns on transistor 03 and energizes the relay K1 A
subsequent wnte to this port with bit one clear will clear the
latch and de-energize the relay

2.1.16 FDC Circuit

The TRS-80 Model 4 Floppy Disk lntertace provides a stan
dard 5-1/4" floppy disk controller The Floppy Disk lntertace
supports single and double density encoding schemes Write
precompensatIon can be software enabled or disabled be
ginning at any track, although the system software enables
write precompensatIon for all tracks greater than twenty-one
The amount of wnte precompensatIon Is 125 nsec and Is not
adJustable One to four drives may be controlled by the in
terface All data transfers are accomplished by CPU data re
quests In double density operation, data transfers are
synchronized to the CPU by forcing a wait to the CPU and
clearing the wait by a data request from the FDC chip The
end of the data transfer Is Ind1cated by generation of a non
maskable interrupt from the interrupt request output of the
FOC chip A hardware watchdog timer insures that any error
condItIon will not hang the wait hne to the CPU for a penod
long enough to destroy RAM contents

Control and Data Buffering

The Floppy Controller Is an 110 port-mapped device which
utilizes ports E4H, FOH. F1 H. F2H, F3H. and F4H The de•
coding logic Is implemented m the Address Decoding (for
more mformatIon see Port Map) U78 Is a b1-d1rect1onal, 8-bIt
transceiver used to buffer data to and from the FDC and
RS-232 circuits The dIrectIon of data transfer ,s controlled
by the combination of control signals DISKIN", RDINTSTA·
Tus·. RDNINSTATUS", and RS232IN" If any signal IS active
(logic low). U78 ,s enabled to dnve data onto the CPU data
bus If all signals are inactive (logic high). U78 Is enabled to
receive data from the CPU board data bus A second buffer
U77 IS used to butter the FDC Chip data to the FDC/RS232
Data Bus. (800-807) U77 IS enabled by Chip Select and ,ts
direction controlled by DISKIN" Again, ,f DISKIN" IS active
(logic low). data ,s enabled to dnve from the FDC chip to the
Mam Data Susses If DISKIN* Is inactive (logic high), data Is
enabled to be transferred to the FDC chip

Non-maskable Interrupt Logic

Gate Array 4 4 (U75) Is used to latch data bits D6 and 07
on the ns,ng edge of the control signal WRNMIMASKREG"
This enables the condItIons which will generate a non-mask
able mterrupt to the CPU The NMI interrupt condItIons
whtch are programmed by doing an OUT InstructIon to port
E4H with the appropriate bits set If data bit 7 Is set, an FDC
interrupt Is enabled to generate an NMI interrupt If data bit
7 1s reset, interrupt requests from the FOC are disabled If
data bit 6 Is set, a Motor Time Out Is enabled to generate an
NM! interrupt If data bit 6 Is reset, interrupts on Motor Time
Out are disabled An IN instruction from port E4H enables
the CPU to determine the course of the non-maskable inter
rupt Data bit 7 1nd1cates the status of FDC interrupt request
(INTRO) (O-true. 1 -false) Data bit 6 1nd1cates the status
of Motor Time Out (O = true, 1 = false) Data bit 5 indicates
the status of the Reset signal (O-true. 1 -false) The con
trol signal RDNMISTATUS" gates this status onto the CPU
data bus when active (logic low)

Drive Select Latch and Motor ON Logic

Selecting a dnve pnor to disk 1/0 operation Is accomphshed
by doing an OUT InstructIon to port F4H wtth the proper bit
set The following table descnbes the bit allocation of the
Dnve Select Latch

Hardware 48

•

C

\ .,

i;'7
., '~

" ..

~§ ~1-:y\,.~1-. . ' . .

~; r I ,; ,, ,I

§ .J------;------'
v: ... ~
~

Hardware 49

!
"

., ., :;:,
0 E
"' .,
::, .r:.
<.> <.>
~ (/) u -.,; 0

N ...
' .,

N

"' I!! ..
::, !:.
"' It

..

~
(i

~ 0 ~

'
I I

;

' ' ; I· • . ' \

1 .
:

. it,f,.1l4,:b ,,.,f,.1!4,ib ,14'114
I

I ! I· . .

CD
...... , ...

-➔

.--. i , .

I . . '

Hardware 50

=
::, -u u = ;: CJ ..
. E

CJ ..
'! ti
I&. "' . -... 0
~ U')
~ a,
::, ..
a, IL
ii: -

-

0

-

2.1.17 RS-232C Circuit

RS-232C Technical Description

The RS-232C circuit for the Model 4 computer supports
asynchronous senal transm1ss1ons and conforms to the EIA
RS-232C standards at the input-output mterface connector
(J3) The heart of the circuit 1s the TR1865 Asynchronous
Aece1ver/Transm1tter U84 It performs the JOb of converting
the parallel byte data from the CPU to a serial data stream
including start, stop, and panty bits For a more detailed de
scnpt1on of how this LSI c1rcu1t performs these functions, re

fer to the TR1865 data sheets and appltcallon notes The
transmit and receive clock rates that the TR 1865 needs are
supphed by the Baud Rate Generator U104 This c1rcu1t
takes the 5 0688 MHz supplied by the system t1m1ng circuit
and the programmed mformat,on received from the CPU
over the data bus and dIvIdes the basic clock rate to provide
two clocks The rates available from the BAG go from 50
Baud to 19200 Baud See the BAG table for the complete
list.

Interrupts are supported In the RS-232C C1rcu1t by the Inter
rupt mask register and the Status register internal to Gate
Array 4 5 (US2) The CPU looks here to see which kind of
interrupt has occurred Interrupts can be generated on re
ceiver data register full, transmitter register empty, and any
one of the errors - panty, framing, or data overrun This al
lows a minimum of CPU overhead in transferring data to or
from the UART The interrupt mask register ,s port E0 (wnte)
and the interrupt status register Is port E0 (read) Refer to
the 10 Port descnpt1on for a full breakdown of all interrupts
and their bit posItIons

All Model I, Ill, and 4 software written for the RS-232C inter
face Is compatible with the Model 4 Gate Array RS-232C cir
cuit, provided the software does not use the sense switches
to configure the tntertace The programmer can get around
this problem by directly programming the BAG and UART for
the desired conf1gurat1on or by using the SETCOM com
mand of the disk operating system to configure the interface
The TRS-80 RS-232C Interface hardware manual has a
good d1scuss10n of the RS-232C standard and specIfIc pro
gramming examples (Catalog Number 26-1145)

BRG Programming Table

li"ansmlt/
Receive Suported

Nibble Baud 16X sefloM Loaded Rate Clock
OH 50 0.8 kHz Yes
1H 75 1.2 kHz Yes
2H 110 1.76 kHz Yes
3H 134.5 2 1523 kHz Yes
4H 150 2.4 kHz Yes
SH 300 4.8 kHz Yes
6H 600 9.6 kHz Yes
7H 1200 19 2 kHz Yes
8H 1800 28.8 kHz Yes
9H 2000 32.081 kHz Yes
AH 2400 38.4 kHz Yes
BH 3600 57.6 kHz Yes
CH 4800 76.8 kHz Yes
OH 7200 115.2 kHz Yes
EH 9600 153.6 kHz Yes
FH 19200 307.2 kHz Yes

Plnout Listing
The RS-232C cIrcurt Is port mapped and the ports used are The following hst Is a pInout descnpt1on of the DB-25 con-
ES to EB Following Is a descnptIon of each port on both ,n- nector (P1)
put and output. Pin No.

Port
ES

EA

E9

EB

Input
Modem status

UART status

Not Used

Receiver Holding
register

Output
Master Reset, enables
UART control register
load
UART control register
load and modem control
Baud rate register load
enable bit
Transmitter Holding
register

Hardware 51

,
2
3

" 5
8
7

•
19
20
22

Signal
PGND (Protective Ground)
TD (Transmit Data)
RD (Receive Data)
ATS (Request to Send)
CTS (Clear To Send)
DSR (Data Set Ready)
SGND (Signal Ground)
CD (Carner Detect)
SRTS (Spare Request to Send)
OTA (Data Terminal Ready)
RI (Ring Indicate)

... .. '

'" ' ::i:

i '"

al
~

--···-

t

.

+~;½
'

80' ...
35· Pl , ..
" ~ .. TRIB65

" ~LS2

'°' ,.. NLSI

'" " " so• 26 "' ,.,
2' "' .. ,
28 "' ,.,
29- ,..

m .. ,
" TRO

'2 m
""' " TR8 ,

'"" 2-jRPI
T. '"" " -"' 12·~ f-8 ,.. "" " .. ,- '" ' U83 * " 8- RP5

"
74LS244 • 7- AP6

' " • .., ,.. "' ,. ~ .. Fl6-~-· T T '. '"'
1' I .

800 • R•
"" ' RB

' RC

""' ' ,.
16 TA .. , 15 TB
14 TC .. ,
13 TO

• L ,., ,_r e-,
LS04

13-{)o-12

2-NC '"

"' PE-13

" " " " '"" 22 .. " .,
" CR .,.., _,

°'' "" '" •---'
TRC (EI)WR
RRC "-
TRE 24-NC
RI 2A

TR(" (SHI 2 3 4,(15 " SHl234(5

I .. ~
~

~ • SM 2
SH • RTCIN _,_
SH 4 '"''

" ':_J
"' 2---i+5V

BRl943

'
" .L •

··--" ,e--,c

Figure 2-25. RS232C Circuit

(Page 5 of Schematic)

0

.. -
+,v

T ~·
" BOO 13 ffl

" '" " ,., 30 '" = " ••• 20

" ,., " ... ,. . .. , -6- PE "" "" 25 FE
RS232 . " SUPPORT

22 THR["' 15 A1i "
.,

* I OUTE8
T OUTEA ,. WITT ~9 rn ,. . fiiEe

" H0 m
14 RI

'. ,.
1 ~~ '. ,.
8 P,HQ

3T

' 4.

•· , .. ,.. OUTE9

" ½

U100

1489* crn D5 ,-cJ-,-
U100

~ DSB D6 s~10---

u10"

·D· "
U99

!489* RI 22

"U"·-
"'
1488* ATS 4 c:O-•--
"' u- OTA 20 C l2 1/

" '"

L,. -·
1488* SRTS D19

;-; O · _F=:8:
J ~-12.V -:- TO D,,,-~

1488*

- JI /7 !3 RO
u~ 3 I
14'8911

~

,,

Model 4 Gate Array
1/0 Pin Assignments

J1 J2 J3 J4 ..
Pin Pin Pin Pin Pin
No. Signal No. Signal No. Signal No. Signal No. Signal

1. GND 1. GND 1. PGND 1. XDO 1. XDO
2. 2. 2. TD 2. GND 2. GND
3. GND 3. GND 3. RD 3. XD1 3. XD1
4. 4. 4. ATS 4. GND 4. GND
5. GND 5. GND 5. CTS 5. XD2 5. XD2
6. 6. 6. DSR 6. GND 6. GND
7. GND 7. GND 7. SGND 7. XD3 7. XD3
8. IPE• 8. IpI• 8. CD 8. GND 8. GND
9. GND 9. GND 9. 9. XD4 9. XD4

10. os2· 10. oso· 10. 10. GND 10. GND
11. GND 11. GND 11. 11. XD5 11. XD5
12. os3• 12. os1· 12. 12. GND 12. GND
13. GND 13. GND 13. 13. XD6 13. XD6
14. 14. 14. 14. GND 14. GND
15. GND 15. GND 15. 15. XD7 15. XD7
16. MOTNE• 16. MOTON!" 16. 16. GND 16. GND
17. GND 17. GND 17. 17. XA0 17. XA0
18. DIRE• 18. DIAi• 18. 18. GND 18. GND
19. GND 19. GND 19. SRTS 19. XA1 19. XA1
20. STEPE• 20. STEP!• 20. DTR 20. GND 20. GND
21. GND 21. GND 21. 21. XA2 21. XA2
22. WOE• 22. wor 22. RI 22. GND 22. GND
23. GND 23. GND 23. 23. XA3 23. XA3
24. WGE• 24. WGI• 24. 24. GND 24. GND
25. GND 25. GND 25. 25. XA4 25. XA4
26. TRK0E• 26. TRK0I• 26. 26. GND 26. GND
27. GND 27. GND 27. 27. XA5 27. XA5
28. WPRTE• 28. WPRTI• 28. 28. GND 28. GND
29. GND 29. GND 29. 29. XA6 29. XA6
30. ROE• 30. RoI• 30. 30. GND 30. GND

~
31. GND 31. GND 31. 31. XA7 31. XA7
32. SDSELE 32. SDSELI 32. 32. GND 32. GND

...I 33. GND 33. GND 33. 33. XIN" 33. XIN"
34. 34. 34. 34. GND 34. GND

35. xouT· 35. xour
36. GND 36. GND
37. XRESET" 37. XRESEr
38. GND 38. GND
39. XINT• 39. XINT•
40. GND 40. GND
41. XWAIT• 41. XWAIT•
42. GND 42. GND
43. EXTIO- 43. EXTIO-
44. SEL• 44. SEL•
45. GND 45. GND
46. NC 46. NC
47. GND 47. GND
48. XMI• 48. XMI0
49. GND 49. GND
50. XIDRQ• 50. XIDRQ•

GND GND

Hardware 53

Model 4 Gate Array
1/0 Pin Assignments

J6 JS J9 J12

Pin Pin Pin Pin
No. Signal No. Signal No. Signal No. Signal

1. 1. 1. 1. DO

• 2. GND 2. 2. GND 2. D1
3. PDQ 3. 3. 3. D2
4. GND 4. VSYNCO• 4. CASSETTE- 4. D3
5. PD1 5. 5. IN 5. D4
6. GND 6. HSYNCO 6. CASSETTE- 6 D5
7. PD2 7. 7. OUT 7. D6
8. GND 8. 8. 8. D7
9. PD3 9. 9. 9. GEN'

10. GND 10. 10. 10. DCLK
11. PD4 11. 11. 11. AO
12. GND 12. 12. 12. A1
13. PD5 13. 13. 13. A2
14. GND 14. 14. 14. J
15. PD6 15. 15. 15. GRAPVID
16. GND 16. 16. 16. ENGRAF
17. PD? 17. 17. 17. DISBEN
18. GND 18. 18. 18. VSYNC
19. NIA 19. 19. 19. HSYNC
20. GND 20. 20. 20. RESET'
21. BUSY 21. 21. 21. WAlr
22. GND 22. 22. 22. H
23. OUT PAPER 23. 23. 23. I
24. GND 24. 24. 24. IN'
25. UNIT SEL 25. GND
26. NC 26. +5V
27. GND 27.
28. FAULT 28. CL166
29. 29. GND
30. 30. +5V
31. NC 31. GND
32. 32. +5V

0 33. NC 33. GND
34. GND 34. +5V

•
Hardware 54

SECTION Ill

4P THEORY OF OPERATION

Hardware 55

j

\ .,

3.1 MODEL 4P THEORY OF OPERATION

3.1.1 Introduction

Contamed 1n the following paragraphs 1s a descnpt1on of the
component parts of the Model 4P CPU It ts d1v1ded into the log

ical operational functions of the computer All components are
located on the Mam CPU board mside the case housing Refer

to Section 3 for disassembly assembly procedures

3.1.2 Reset Circuit

The Model 4P reset circuit provides the neccessary reset
pulses to all cIrcwts during power up and reset operations R25
and C218 provide a time constant which holds the input of U121
low dunng power-up Thts allows power to be stable to all ctr
cwts before the RESET' and RESET signals are applted When
C218 charges to a logic high the output of U121 triggers the
input of a retnggerable one-shot mult1vIbrator (U 1) U 1 outputs
a pulse with an approximate width of 70 mIcrosecs When the
reset switch Is pressed on the front panel this discharges C218
and holds the mput of Ul 21 low until the switch Is released On
release of the switch. C218 again charges up tnggenng U121
and Ul to reset the microcomputer

3.1.3 CPU

The central processing unit (CPU) of the Model 4P mIcrocom•
puter Is a ZS0A microprocessor The ZS0A Is capable of run
ning m either 2 MHz or 4 MHz mode The CPU controls all
functions of the microcomputer through use of ,ts address Imes
(AO-A 15). data lines (D0-D7) and control Imes (M1 IOREQ
RD. WR. MREQ, and RFSH) The address lines (A0·A15)

are buffered to other ICs through two 74LS244s (U68 and U26)
which are enabled all the time with their enables pulled to GND
The control Imes are buffered to other ICs through a 74F04
{U86) The data Imes (D0-D7) are buffered through a b1-d1rec
tional 74LS245 (U71) which Is enabled by BUSEN" and the di
rection Is controlled by BUSDIR"

3.1.4 System Timing

The main tImmg reference of the microcomputer with the ex
ception of the FDC circuit. comes from a 20 2752 MHz Crystal
Oscillator (Yl) Thts reference is d1v1ded and used for gener
ating all necessary timing for the CPU video cIrcu,1 and RS-
232-C circuit The output of the crystal osc1llator is hltered by a
ferntte bead (FB5) 470 ohm resistor (R46) and a 68 pf ca
pacitor (C242) After being hltered 11 Is led into Ul 26 a 16R6A
PAL (Programmable Array Logic) where 11 Is d1v1ded by 2 to
generate a 1 0 1376 MHz signal (1 OM) for the 64 X 16 video dis
play U126 d1v1des the 20 2752 MHz by 4 to generate a 5 0688
MHz signal (RS232CLK) for the baud rate generator m the RS-
232-C circuit The CPU clock Is also generated by U 126 which
can be either 2 or 4 MHz depending on the slate of FAST mput

!pm 9 of U126) If FAST Is a logic low the 20 2752 MHz Is d1-
v1ded by 10 which generates a 2 2752 MHz signal If FAST Is a
logic high the 20 2752 MHz Is d1v1ded by 5 which generates a
4 05504 MHz signal The CPU clock (PCLK) Is led through an

act1ve pull-up cIrcuIt which generates a lull 5-volt swing with last
nse and fall times required by the Z80A U 126 the 16R6A PAL.
generates all symmetrical output signals and also does not al
low the PCLK output to short cycle or generate a low or high
pulse under 11 0 nanoseconds which the Z80A also requires
Refer to System Timing Fig. 3-2.

3.1.4.1 Video Timing

The video timing Is controlled by a 1 0L8 PAL (U127) and a four•
bit synchronous counter U128 (74LS161) These two ICs gen•
erate all the necessary tImIng signals for the four video modes
64 x 16 32 x 16, 80 x 24 and 40 x 24 Two reference clock sig
nals are required for the four video modes One reference
clock. the 10 1376 MHz signal (10M) 1s generated by U126 and
ts used by the 64 x 16 and 32 x 16 modes The second refer
ence clock ts a 12 672 MHz (12M) signal which Is generated by
a Phase Locked Loop (PLL) cIrcuIt and rs used by the 80 x 24
and 40 x 24 modes The PLL c1rcU1t consists of U147 (74LS93).
U148 (NE564 PLL). and U149 (74LS90) The original 20 2752
MHz clock Is dIvIded by 16 through U147 which generates a
1 2672 MHz signal The output of U1471s reduced In amphtude
by the voltage divider network A27 and R28 and the output Is
coupled to the reference input of U 148 by C227

The PLL (NE564) Is adjusted to oscillate at 12 672 MHz by the
tuning capacitor C231 This 12 672 MHz clock Is then d1v1ded
by 10 through U149 to generate a second 1 2672 MHz signal
which Is fed to a second input of U 148 The two 1 2672 MHz
signals are compared internally to the PLL where 11 corrects the
12 672 MHz output so It IS synchronized Wtlh the 20 2752 MHz
clock

MODSEL and 8064' s1gnals are used to select the des1red
video mode 8064' controls which reference clock ts used by
U127 and MODSEL controls the single or double character
width mode Refer to the following chart for selecting each
video mode

8064° MODSEL Video Mode

0 0 64 X 16

0 1 32 X 16

0 80 X 24
40 X 24

'This Is the state to be written to latch U89 Signal Is inverted
before berng input to U 127

Hardware 57

:c .,
~
@
g:

T

TIMING -

A= ADDRESS LINES
C = CONTROL LINES
D = DATA LINES
T = TIMING

t)

A

CPU C

D

A ~
a: .,

C- ..
- ..

:,
D "' -

' -
D - ROM

-ID :,
- "' rID KEYBOARD

-
• - CRTC

AND
VIDEO .. - CIRCUIT

'

VIDEO

~
RAM .. ,

'

-
'Hi

RAM 11111

.
I/O
DECODE ,...

A

C

' D

~

-D

0

-
VIDEO
PORT

-
SOUND • RS232 .. - i- ' PORT

rli SERIAL - CHIP

' • - - DISK _I_
CONTROLLER - GRAPHICS • ~ BOARD

- PORT Hi~ CHIP ,-
'I'

' -LINE INTERNAL - r--a I/O BUS PRINTER !ill
PORT -- PORT • ' - '

~mF • ~ ,_
a: EXTERNAL ., ,_ .. ·- I/O BUS ..

PORT '
:,

"' --- -

"8 1M !'•1, Functllnal Block DlagraM

•

:i:: .,
a.
:;; .,
iil
g:

I)

2/il MC, 2/i!I
(0126 PIN 1,2)

2/i!M
(0126 PIN 12)

1/i!M
(0126 PIN 16)J

1/i!S
(0126 PIN lS)J

5S
(0126 PIN 14)

2.5S
(0126 PIN 13)

PSET (FAST)
(0126 PIN 18)
PCLK (FAST)
(0126 PIN 19)

PSET (FAST)
(0126 PIN 18)
PCLK CFAS'rl
(0126 PIN 19)

RS232CLK
'0126 PIN 17)

I
I

\...
) ,, ..)

I I I I I I I I I L
I I I I I I I

Figure 3-2. System Timing

DCLK, the reference clock selected, is output from U127.
DCLK is fed back into U127 for internal timing reference and
is also fed to the clock input of U128 (74LS161). U128 is
configured to preload with a count of 9 each time it reaches
a count of 0. This generates a signal output of TC (128 pin
15) that occurs at the start of every character time of video
output. TC is used to generate LOADS" (Load Shift Regis
ter). QA and QC of U128 are used to generate SHIFT",
XADR7", CRTCLK and LOAD" for proper timing for the four
video modes. QA, QB, and QC which are referred to as H, I,
and J are fed to the Graphics Port J7 for reference timings
of Hires graphics video. Refer to Video Timing, Figs. 3-3 and
3-4 for timing reference.

3.1.5 Address Decode

The Address Decode section will be divided into two sub
sections: Memory Map decoding and Port Map decoding.

3.1.5.1 Memory Map Decoding

Memory Map Decoding 1s accomphshed by a 16L8 PAL (U109)
Four memory map modes are available which are compatible
with the Model Ill and Model 4 microcomputers A second 16L8
PAL (U110) Is used In conJunctton with U109 for the memory
map control which also controls page mapping of the 32K RAM
pages. Refer to Memory Maps below.

3.1.5.2 Port Map Decoding

Port Map Decoding Is accomphshed by three 74LS138s (U87,
U88, and U107). These ICs decode the low order address (AO·
A7) from the CPU and decode the port being selected The IN.
signal from U108 enables U87 which allows the CPU to read
from a selected port and the our signal, also from U 108. en
ables UBS which allows the CPU to wnte to the selected port
U107 only decodes the address and the IN· and our signals
are ANDed with the generated signals.

3.1.6 ROM

The Model 4P contains only a 4K x 8 Boot ROM (U70). This
ROM is used only to boot up a Disk Operating System into
the RAM memory. If Model Ill operation or DOS is required,
then the RAM from location 0000-37FFH must be loaded with
an image of the Model Ill or 4 ROM code and then executed.
A file called MODEL A/Ill is supplied with the Model 4P which
contains the ROM image for proper Model Ill operation. On
power-up, the Boot ROM is selected and mapped into loca
tion 0000-0FFFH. After the Boot Sector or the ROM Image is
loaded, the Boot ROM must be mapped out by OUTing to
port 9CH with DO set or by selecting Memory Map modes 2
or 3. In Mode 1 the RAM is write enabled for the full t 4K
This allows the RAM area mapped where Boot ROM Is lo
cated to be written to while executing out of the Boot ROM.
Refer to Memory Maps.

The Model 4P Boot ROM contains all the code necessary to
1mt1alIze hardware detect options selected from !he keyboard
read a sector from a hard disk or l!oppy and load a copy of the
Mode! Ill ROM Image (as mentioned) into the lower 14K of
RAM

The firmware Is dIv1ded into the follow1ng routines

Hardware lnI1tahzation
Keyboard Scanner
Control
Floppy and Hard Disk Driver
Disk Directory Searcher
Fite Loader
Error Handler and Displayer
RS·232 Boot
D1agnost1c Package

Theory of Operation

This section describes the operation of vanous routmes m the
ROM Normally. the ROM 1s not addressable by normal use
However. there are several routines that are available through
fixed calhng locations and these may be used by operating sys
tems that are booting

On a power-up or RESET cond1tIon, the 280 s program counter
Is set to address O and the boot ROM Is switched-in The mem•
ory map of the system 1s set to Mode O (See Memory Map for
details) This will cause the 280 to fetch 1nslructIons from the
boot ROM

The lmllahzatIon section of the Boot ROM now performs these
functions:

1. Disables maskable and non-maskable interrupts
2 Interrupt mode 1 1s selected
3 Programs the CRT Controller
4 trnt1ahzes the boot ROM control areas m RAM
5 Sets up a stack pomter
6 Issues a Force Interrupt to the Floppy Disk Controller

to abort any current act1vIty
7 Sets the system clock to 4mhz
8 Sets the screen to 64 x 1 6
9 Disables reverse video and the alternate character

sets
10. Tests for· key betng pressed•
11. Clears all 2K of video memory

• This Is a special test If the · Is being pressed then
control Is transferred to the d1agnost1c package In the
ROM All other keys are scanned via the Keyboard
Scanner

Hardware 60

0

~) \..) .)

1,0M, 12M

DCLK

DOT*

H

I _J I I I I I I I I I r
J

1 TC
~

i
"' MA,0 iii
O> -

SHIFT*

LOADS* LJ LJ LJ
LOAD* u LI u

CRTCLK

XADR7*

Figure 3-3. Video Timing 64 x 16 Mode 80 x 24 Mode

lJM, 12M

DCLK
DOT*

H
LJ LJ LJ L...J L...J L...J L.J L.J LJ L...J L-

I_j ' •
\ I ' j a I \ r

J
I.

I
!l) TC a.

r, n n ,.
!l) MA,0 (D

"' SHIFT* "'
LOADS*

LJ LJ
LOAD*

CRTCLK

XADR7* -----......1
... ft M. Video Tlffllnl 32 x 16 Modi 40 X 24 Modi

t) 0 I>

i

~,

_,,I

' .,

The Keyboard scanner Is now called It scans the keyboard for

a set period of time and returns several parameters based on
which If any keys were pressed

The keyboard scanner checks for several different groups of
keys These are shown below

Function Group
F1

<F2>
<F3->
<1>
<..2>
< 3 >

- Left-Shtft
- Right-Shtft-·

.Ctr/ •
•.Caps ,

Special Keys
<P✓

<L✓

<N>

Selection Group
A
B
C
D
E
F
G

Misc Keys
Enter
Break

When any key m the Function Group Is pressed 11 1s recorded
m RAM and will be used by the Control routine 1n dIrect1ng the
action of the boot If more than one of these keys are pressed
during the keyboard scan the last one detected well be the one
that 1s used The Function group keys are currently defmed as

,- F1 _.,,or· 1 > Will cause hard disk boot
...-,f2_., or <2_.. w,11 cause floppy disk boot
<.F3.- or, 3-. Will force Model Ill mode

- Left-Shtft • Reserved for future use
-·.R,ght-Shtlt .- Boot from RS-232 port
<-Ctrl., Reserved for future use
<.Caps_, Reserved for future use

The Special keys are commands to the Control routine which
direct handling of the Model Ill ROM-image Each key 1s de
tected 1nd1v1dually

<N..-

When loading the Model IH
ROM image the user wtll be
prompted when the disks can
be switched or when ROM
BASIC can be entered by
pressmg Break
Instructs the Control routrne to
not load the Model 111 ROM
image even ,t 11 appears that
the operating system being
booted requires 11

L Instructs the Control routine to
load the Model Ill ROM image
even ,fit 1s already loaded This
1s useful ,f the ROM image has
been corrupted or when switch

mg ROM images /Note that
this will not cause the ROM
image to be loaded 11 the boot
sector check indicates that the
Model Ill ROM 1mage Is not
needed Press F3 or F3
and L to accomplish that

The Selection group keys are used m determining which file w,11

be read from disk when the ROM image 1s loaded For details
ot this operation see the Disk Directory Searcher If more than
one of the Selection group keys are pressed the last one de
tected will be the one that Is used

The Miscellaneous keys are

• Break

Enter

Pressing this key 1s simply re
corded by setting locat1on
405BH non-zero It is up to an
operat,ng system to use this
flag 11 desired
Termmates the Keyboard rou
tine Any other keys pressed up
to that time will be acted upon

Enter 1s useful for expen-
enced users who do not want to
wait until the keyboard timer
expires

The Control section now takes over and follows the following
flowchart

Hardware 63

1

Beg1n

No

< F2 >
or < 2>

pressed ?

No

< F3 >
or < 3>

pressed ?

No

Yes
2

Yes
>-----I 3

YPS

Goto {l]
(Hard Disk Bootl

Goto [2]
(Floppy Disk Boot)

Goto [3 J
(Mode 1 I l I Boot l

,Right- Shift>;)-----1
pressed ?

4 Goto 14)
<RS-232 Boot)

~o

At this point, no valid Function keys
have been prPssed.

ARl..'.~l::T
Cont.roller

Board
Present. ?

A

Y~s
V1splay an error
mes sag<:. , ARC...,E1
Boot ROM required
for ARCNE.:T Boot)

A

Hard
D1sk Drive

Present ?

No

<Fl>
or < l >

pressed ?

No

2\.---~

r lop[Jy
D1sk Drive

Present. ?

Yes

B

Hardware 64

Yes Attempt to
r(c'ad boot
sector

Yes

Y'2'S

Display
Hard D1sk

Error
Message

Stop

Attempt to
read boot
sector

error
?

C

error
?

--

C

i
®

<F2>
or <2>

pressed ,,

Model III
ROM Image
Present?
Note: J

D

Yes

Display
Floppy Dlsk
Error
Message

No

Stop

Yes

C

Yes

Set Transfer
Address to
43,l:l.0H
Note: 2

®

E

Note: 1

Hardware 65

D

3 }------':,.j

Attempt to
locate
ROM Image
00

Floppy Disk
Note: 4

Write-enable
.0-37FFH
(Mode ll

Load ROM
Image

Note: 5

Set Transfer
Address at end
of ROM Image
(Normally 3U5H)

Note: 2

G

No

Set
Transfer
Address to
3j1115H
Note: 2

Yes

Display
Error
Message

Stop

®

F

G

Yes

< P>
pressed

Display
~ ROM Image
lS loaded"
message

Walt for
<ENTER> or
<BREAK> to
be pressed

Wr 1 te-protect
memory (Mode .IJJ

Set CPU speed
to 2MHz

No

Hardware 66

Sw1t.ch boot ROM
out of Memory

Jump to
Transfer Address

1n1t1al1ze
RS-232 Port
Note: 6

Walt for
Carrier Detect

Determine
Correct
Baud Rate

Transmit Baud
Rate Detect
Message

--

C

j
Wa1,. for
Sync Byte

FFH)

Load program
from RS-232

An

Transfer
control
to address
received

Notes

Yes Display and
transmit error

(l) If the boot sector was not 256 bytes m length then ti Is as
sumed to be a Model Ill package and the ROM image wI1!
be needed If the sector Is 256 bytes m length then the
sector rs scanned for the sequence CDxxOOH The CD Is
the first byte of a ZSO uncond1t1onal subroutine call The
next byte can have any value The third byte Is tested
against a zero What this check does Is test for any refer
ences to the first 256 bytes of memory All Radio Shack
Model Ill operating systems and many other packages all
reference the ROM at some point during the boot sector

Most boot sectors will display a message If the system can
not be loaded To save space these routines use the
Model Ill ROM calls to display the message Several ROM
calls have their entry points m the first 256 bytes of mem
ory and these references are detected by the boot ROM

Packages that do not reference the Model Ill ROM m the

boot sector can still cause the Model Ill ROM image to be
loaded by coding a COxxOO somewhere 1n the boot sector

It does not have to be executable At the same time Model
4 packages must take care that there 1s no sequence of

bytes m the ooot sector that could be mis interpreted to be
a reference to the Boot ROM An example of this would be
sequence 06CO0E00 which 1s a LO 8 OCOH and a LO

C O If the boot sector cannot be changed then the user
must press the F3 key each time the system 1s started
to rnlorm the ROM that the d sk contarns a Model Ill pack
age which needs the Model Ill ROM image

(2) If you are loading a Model 4 operating system then the
boot ROM will always transfer control to the first byte of the

boot sector which Is at 4300H If you are loadmg a Model
Ill operatmg system or about to use Model Ill ROM BASIC

then the transfer address Is 301 SH This Is the address of
a Jump vector in the C ROM of the Model Ill ROM image
and this will cause the system to behave exactly hke a
Model Ill If the ROM image file that Is loaded has a differ

ent transfer address then that address wilt be used when
loading ,s complete If the image Is already present the
Boot ROM Will use 3015H

(3) Two different tests are done to msure that the Model Ill
ROM image Is present The first test Is to check every third
location startmg at 3000H for a C3H This Is done for 1 O lo
cations If any of these locations does not contain a C3H
then the ROM image is considered to be not present
The next test Is to check two bytes at location OOOBH If
these addresses contain E9E 1 H then the ROM image Is
considered to be present

(4) See Disk Director Searcher for more mformat1on

(5) See File Loader for more mformat1on

(6) The RS 232 loader ,s described under AS 232 Boot

Disk Directory Searcher

When the Model Ill ROM image Is to be loaded 1t is always read
from the floppy m dnve O

Before the operation begms some checks are made First the

boot sector Is read m from the floppy and the first byte 1s
checked to make sure It Is either a OOH or a FEH If the byte
contatns some other value no attempt will be made to read the
ROM image from that disk The location of the directory cylinder
Is then taken from the boot sector and the type of disk Is deter
mined This Is done by examIrnng the Data Address Mark that

Hardware 67

was picked up by the Floppy Disk Controller (FDC) dunng the
read of the sector If the DAM equals 1 the disk 1s a TRSDOS
1 x style disk If the DAM equals O then the disk 1s a LOOS 5 1
TRSOOS 6 style disk This 1s important since TRSDOS 1 x
disks number sectors starting with 1 and LOOS style disks
number sectors starting wtlh 0

Once the disk type has been determined an extra test 1s made
If the disk Is a LDOS style disk This test reads the Granule Al
location Table (GAT) to determine 1f the disk 1s single sided or
double sided

The directory 1s then read one record at a time and a compare
Is made against the pattern 'MODEL% for the filename and
'Ill' for the extension The '% means that any character will
match this pos1t1on If the user pressed one of the selection
keys (A-G) during the keyboard scan, then that character Is
substituted in place of the '% character For example, 1f you
pressed 'D', then the search would be for the file MODELO
with the extension 'Ill' The searching algorithm searches unttl
1t finds the entry or It reaches the end of the directory

Once the entry has been found, the extent information for that
file Is copied mto a control block for later use

File Loader

The Ille loader Is actually two modules - the actual loader and
a set of routines to fetch bytes from the file on disk The loader
IS invoked Via a RST 28H The byte fetcher IS called by the
loader using RST 20H Smee restart vectors can be re-directed,
the same loader 1s used by the RS-232 boot The difference Is
that the AST 20H Is redirected to pomt to the RS-232 data re
ceIvIng routine The loader reads standard loader records and
acts upon two types

01 Data Load
1 byte with length of block, mcludIng address
1 word with address to load the data
n bytes of data, where n + 2 equals the length spec1f1ed

02 Transfer Address
1 byte w1th the value of 02
1 word with the address to start execution at

Any other loader code 1s treated as a comment block and 1s ig
nored Once an 02 record has been found, the loader stops
reading, even 1f there Is add1t1onal data, so be sure to place the
02 record at the end of the file

Floppy and Hard Disk Driver

The disk drivers are entered via RST 8H and will read a sector
anywhere on a floppy disk and anywhere on head 1 (top-head)
In a hard disk dnve Either 256 or 512 byte sectors are readable
by these routines and they make the determination of the sector
size The hard disk dnver Is compatible with both the WD1000
and the WD1010 contro11ers The floppy disk dnver Is wntten for
the WD1793 controller

Serial Loader

Invoking the senal loader Is sIm1lar to forcing a boot from hard
disk or floppy In this case the right shift key must be pressed at
some time dunng the first three seconds after reset The pro
gram does not care 1f the key Is pressed forever makmg It con
venient to connect pms 8 and 10 of the keyboard connector with
a shorting plug for bench testing of boards Thts assumes that
the ob1ect program bemg loaded does not care about the key
closure

Upon entry, the program first asserts OTA (J4 pm 20) and RTS
(J4 pm 4) true Next, Not Ready 1s printed on the topmost hne
of the video display Modem status hne CD (J4 pin 8) Is then
sampled The program loops until It finds CD asserted true At
that time the message "Ready" Is displayed Then the program
sets about determining the baud rate from the host computer

To determine the baud rate, the program compares data re
ceived by the UART to a test byte equal to 55 hex The receiver
Is first set to 19200 baud If ten bytes are received which are not
equal to the test byte the baud rate Is reduced This sequence
Is repeated un111 a valid test byte Is received If ten failures occur
at 50 baud, the entire process begins again at 19200 baud If a
vahd test byte 1s received, the program waits for ten more to ar
nve before concluding that 11 has determined the correct baud
rate If at this time an tmproper byte Is received or a receiver er
ror (overrun, framing, or panty) Is intercepted, the task begins
again at 19200 baud

In order to get to th,s point the host or the modem must assert
CD true The host must transmit a sequence of test bytes equal
to 55 hex with 8 data bits odd panty and 1 or 2 stop bits The
test bytes should be separated by approximately O 1 second to
avoid overrun errors

When the program has determmed the baud rate. the message

"Found Baud Rate x"

Is displayed on the screen where · x" Is a letter from A to P
meanmg

A= 50 baud E = 150 I = 1800 M - 4800
B = 75 F = 300 J = 2000 N - 7200
C= 110 G = 600 K = 2400 0 = 9600
D = 134 5 H = 1200 L = 3600 P = 19200

Hardware 68

•

0

.,

The same message Jess the character s1gmfymg the baud rale

1s transmitted to the host. with the same baud rate and protocol
This message Is the signal to the host to stop transm1tt1ng test

bytes

After the program has transmitted the baud rate message 11
reads from the UART data register m order to clear any overrun

error that may have occurred due to the test bytes coming 1n

dunng the transmission of the message This Is because the re
ceiver must be made ready to receive a sync byte s1gnalhng the

beginmng of the command file For this reason 11 1s important
that the host wait until the entire baud rate message (16 char•

acters) Is received before transmitting the sync byte which 1s
equal to FF hex

When the loader receives the sync byte the message

"Loading'

is displayed on the screen Again, the same message 1s trans

mitted to the host, and, again the host must wait for the entire
transm1ss1on before starting into the command file

If the receiver should intercept a receive error whrle wa1tIng for
the sync byte, the entire operatmn up to this pomt 1s aborted
The video display ,s cleared and the message

"Error, x·

1s displayed near the bottom of the screen, where x 1s a letter
from B to H, meaning

B = panty error
C = framing error
D = panty & framing errors
E = overrun error
F = panty & overrun errors
G = framing & overrun errors

H = panty & framing & overrun errors

The message

"Error"

1s then transmitted to the host The ent1re process 1s then re
peated from the · Not Ready' message A six second delay 1s
inserted before re1mtiahzat1on This 1s longer than the time re

quired to transmrt five bytes at 50 baud, so there 1s no need to
be extra careful here

If the sync byte 1s received without error, then the "Loadmg'
message 1s transmitted and the program ,s ready to receive the
command file After rece1v1ng the ' Loading message the host
can transmit the Ille without nulls or delays between bytes

(Since the hie represents 280 machme code and all 256

comb1nat1ons are meaningful 11 would be disastrous to

transmit nulls or other ASCII control codes as fillers ac•
knowledgement or start-stop bytes The only control
codes needed are the standard command file control

bytes)

Data can be transmitted to the loader at 19200 baud with no de·

lays inserted Two stop bits are recommended at high baud

rates

See the Frie Loader descnp!lon for more information on flle

loading

If a receive error should occur dunng file loading the abort pro
cedure described above will take place, so when attempting re·

mote control, rt 1s wise to monitor the host receiver dunng
transmIss1on of the hie When the host 1s near the obJect board
as 1s the case m the factory apphcat1on or when more than one
board 1s bemg loaded, 1t may be advantageous or even nec

essary to ,gnore the transmitted responses of the Object
board(s) and to manually pace the test byte, sync byte and
command file phases of the transmission process usmg the

video display for handshaking

System Programmers Information

The Model 4P Boot ROM uses two areas of RAM while 111s run•
nmg These are 4000H to 40FFH and 4300H to 43FFH (For
512 byte boot sectors, the second area 1s 4300H to 44FFH) If
the Model Ill ROM Image 1s loaded add1t1onal areas are used
See the technical reference manual for the system you are us
ing for a 11st of these areas

Operating systems that want to support a software restart by re
executing the contents of the boot ROM can accomplish this ,n
one of two ways If the operatmg system relies on the Model Ill
ROM Image, then Jump to location Oas you have 1n the past If

the operatmg system 1s a Model 4 mode package, a simple way
1s to code the followmg instructions m your assembly and load
them before you want to reset

Absolute Location
0000
0001
0003

Instruction
DI

LD
OUT

A1
(9CH)A

These mstruct1ons cause the boot ROM to become address
able After executing the OUT mstruct1on the next 1nstruct1on

executed will be one 1n the boot ROM (These 1nstruct1ons also
exist 1n the Model Ill ROM image at location 0) The boot ROM
has been wntten so that the first 1nstruct1on 1s at address 0005
The hardware must be m memory mode 0 or 1 , or else the
boot ROM will not be switched in This operation can be

done with an OUT 1nstruct1on and then a AST 0 can be exe•

cuted to have the ROM switched 1n

Hardware 69

Restarts ca11 be redirected at any t1me while the ROM ,s
switched In All restarts Jump to fixed locations 1n RAM and
these areas may be changed to point to the routine that is to be
executed

Restart RAM Location Default Use
0 none Cold Start Boot
8 4000H Disk I O Request

10 4003H Display stnng
18 4006H Display block
20 4009H Byte Fetch (Called by Loader)
28 400CH File Loader
30 400FH Keyboard scanner
38 4012H Reserved for future use
66 4015H NMI (Floppy I O Command

Complete)

The above routrnes have fixed entry parameters These are de•
scnbed here

Disk 110 Request (AST SH)

Accepts
A
B

C

DE

HL

Returns
z

NZ

Error Codes

3
4
5
6
7

8
9

11
12

l for floppy 2 for hard disk
Command
lrnt,ahze
Restore
Seek
Read

1

4

6
12 (All reads have an 1m·

phed seek)
Sector number to read
The contents of the location d1sktype
(405CH) are added to this value before
an actual read If the disk 1s a two sided
floppy iust add 18 to the sector number
Cylinder number (Only E 1s used rn
floppy operations)
Address where data from a read opera•
t1on 1s to be stored

Success Operation Completed
Error Error code 1n A

Hard Disk drive 1s not ready
Floppy disk drive 1s not ready
Hard Disk dnve 1s not available
Floppy disk dnve Is not available
Drive Not Ready and no Index (Disk In
dnve door open)
CRC Error
Seek Error
Lost Data
ID Not Found

Display String (AST 1 OH)

Accepts
HL

OE

Returns
Success Always

A

DE
HL

Pointer to text to be displayed
Text must be terminated with a null (0)
Offset posrt1on on screen where text 1s to
be displayed
{A 0000H will be the upper left·hand cor·
ner of the display)

Altered
Points to next posIt1on on video
Points to the null (0)

Display Block (AST 18H)

Accepts
HL

or

Points to control vector in the format
+ O Screen Offset
+2
null
+4
null

+n

+n

Pointer to text, terminated with

Pointer to text terminated with

word FFFFH

word FFFEH

End of control
vector
Next word 1s
new Screen
Offset

If Z flag 1s set on entry, then the first screen offset 1s read from
DE instead of from the control vector

Each stnng Is pos1t1oned after the previous strmg unless a
FFFEH entry 1s found This IS used heavily in the ROM to re•
duce duphcat1on of words in error messages

Returns
Success Always

OE Points to next pos1t1on on video

Byte Fetch (AST 20H)

Accepts None
Returns

Errors

z
NZ

2

10

Success byte m A
Failure error code In A

Any errors from the disk I O call and
ROM Image cant be loaded - Too many
extents
ROM Image cant be loaded - Disk dnve
1s not ready

Hardware 70

•

G

i

File Loader (RST 28H)

Accepts None

Returns
z

NZ

Errors

0

Success
Failure. error code m A

Any errors from the disk 1/0 call or the
byte fetch call and:
The ROM image was not found on drive 0

There are several pieces of 1nformat1on left 1n memory by the
boot ROM which are useful to system programmers. These are
shown below:

RAM Location
401DH

4055H

4056H
4057H

4059H

4058H

405CH

Description
ROM Image Selected (% for none
selected or A·G)
Boot type
1 = Floppy
2 - Hara disk
3 = ARCNET
4 = RS-232C
5 - 7 cc= Reserved
Boot Sector Size (1 for 256, 2 for 512)
RS-232 Baud Rate (only valid on RS-
232 boot)
Function Key Selected
0 - No function key selected

<F1>or<1-- 86
<F2,• or -~2--·
<F3 ·or· :3-·
<Caps,
<Ctrl _,
<Left-Shift>
· Right-Shift
Reserved

87
88
85
84
82
83
80-81 and 89-90

Break Key lndicat1on (non-zero 1f
•s Break .., pressed)

Disk type (0for LDOS
TRSDOS 6. 1 for
TRSDOS 1.x)

Keep in mind that Model lll ROM image will m1tlahze these
areas, so this mformat1on 1s useful only to the Model 4 mode
programmer.

3.1.7 RAM

Two configurations of Random Access Memory (RAM) are
available on the Model 4P: 64K and 128K. The 64K and 128K
option use the 6665-type 64K x 1 200NS Dynamic RAM. which
requires only a single - Sv supply voltage.

The DRAMs require multiplexed incoming address Imes. This
is accomplished by ICs U 111 and U 112 which are 7 4LS157
multiplexers. Data to and from the DRAMs are buffered by a
74LS245 (U117) which is controlled by Page Map PAL. U110.
The proper timrng signals RASO·. RAS1 ·, MUX". and CAS" are
generated by a delay line circuit U97. U115 (1 2 of a 74S112)
and Ul 16 (1 4 of a 74F08) are used the generate a precharge
circuit. During M1 cycles of the Z80A in 4 MHz mode. the high
time m MREQ has a minimum time of 110 nanosecs. The spec•
ification of 6665 DRAM requires a minimum of 120 nanosecs so
this circuit will shorten the MREQ signal during the M 1 cycle
The resulting signal PMREQ is used to start a RAM memory
cycle through Ul 13 (a 74S64). Each different cycle is controlled
at Ul 13 to maintain a last M1 cycle so no wait states are re
quired. The output of U113 (PRAS•) Is ANDed with RFSH to not
allow MUX" and CAS" to be generated durmg a REFRESH
cycle. PAA$" also generates either RASO* or RASl •. depend•
ing on which bank of RAM the CPU Is selecting. GCAS" gen
erated by the detay hne U97 Is latched by Ul 15 (1 2 of a
74S112) and held to the end of the memory cycle. The output
of Ul 15 is ANDed with VIDEO signal to disable the GAS" signal
from occurring if the cycle ,s a video memory access. Refer to
M1 Cycle Timing (Figure 3-8. and 3-9.), Memory Read and
Memory Write Cycle Timing (Figure 3-10.) and (Figure 3·
11.).

Hardware 71

::c
"' a.
:E
"' cil
....
I\)

MODE iJ

BOOT ROM 4K

RAM 1,0K

I READ ONLY l(DESPAGE, BNPAGE,
• • SRCPAGE)
l'""~K~E~Y~B~D~l~K~'I

I

I

VIDEO IK (1,1,/J)

RAM 16K (1,1,1)

-----. }\

RAM 32K

11(,0,1,,0)

(,0,1,1)

SEL,0 =
SELl =
ROM=

t'

STATE

,0
,0
1

32K RAM

r-----,

. I

LEVEL

,0v
,0v
/JV

32K RAM I

Figure 3-5. Memory

0

RAM 14K
READ ONLY

MODE iJ

(DESPAGE, ENPAGE,
I I SRCPAGE)

KEYBD lK
VIDEO lK

RAM 16K

r-----,

I RAM 32K I •

SEL/J =
SELl =
ROM=

(1,1,fl)

I\

(,0,1,1)

STATE

,0
,0
,0

32K RAM

t------

, I

LEVEL

,0v
.0v
sv

32K RAM

I)

:c .,
a ,. .,
al
~

IJ
MODE 1

BOOT ROM 4K

RAM 14K

IWRITE ONLY4K,(DESPAGE, BNPAGE,
• • SRCPAGE)
1--K""E""Y_B .. D""""l_K_""'

VIDEO lK (1,1,,0)

RAM 16K (1,1,1)

I ----7 I\
I I /<,0,1,,0)

I
RAM 321(I .. •

SEL,0 =
SELl =
ROM=

(,0,1,1)

STATE

1
.0
.0

32K RAM

r---
I

LEVEL

sv
.0V
sv

32K RAM

\.__

Figure 3-6. Memory

RAM 14K

KEYBD lK
VIDEO lK

RAM 16K

MODE 1

DESPAGE, ENPAGE,
SRCPAGE)

• (1,1,,0)

•

32K RAM

----- t--i----

RAM 32K '
• -

SEL,0 =
SELl =
ROM=

(,0,1,,0)

(,0,1,1)

STATE

1
.0
1

\

LEVEL

sv
,0V
,0V

32K RAM

::c .,
a.
:E .,
al
~

RAM 32K

RAM 29K

KEYBD lK
VIDEO 2K

MODI 2

(DESPAGE, BIIPAGB,
SRCPAGE) .. (1,1,11

(,0,1,1)

32K RAM

32K RAM

SEL,0 =
SELl =
ROM=

STATB

,0
1
X

LEVEL

.0v
5V

f)

RAM 32K

RAM 32K

Figure 3-7 . ._.ry
(1

MODB 3

(DESPAGE, ENPAGE,
SRCPAGE)

(1,1,fl
32K RAM

,.. ___ _

..

SEL,0 =
SELl =
ROM=

(,0,1,1)

STATI

1
1
X

LEVEL

sv
5V

·-

32K RAM

.. } \ >MS 9)
Wawlorm w,velorm o,_,

S.,..,bol
lnpul Oul;lvt ,,,.,,,., lnp,ul

',lu~I Be N,11 Be Oon I c_,,e CMng,ng

VJ ,1 '✓<1'•d \XXXXXXXX: .:.nv Cr.ange ~Idle
P~,m!ll~ '-'"•rown

~ ll>anQe W,11 Chanqe

l'omH!OL F,om H 10 L ==>-- "•Oh
~oec!dnce

lllllJ Ct>anqe w,11 Change
;,,,,., l to H From l !OH

I Tl I T2 I T3 I
T4

(2MHz) PCLK _J \ ' \ ' \ ' \ ' A/l-Al5

Ml

MREQ

RD

:i:: RFSH Ill
a
::!
Ill PMREQ al
....
"' RAMRDEN

PRAS*

RASEN/l* or
RASENl*

RAS/l* or
RASl*

MUX*

CAS*

DRA/l-DRA 7 XX)()0/)()()1 ROW ADD. 1 COL. ADD. ~ REFRESH ADD. C
MD/l-MD7 ('/ALID DATA

Figure 3-8. M1 Cycle Timing (2MHZ) 100ns/dlr.

Tl I T2 I T3 I T4

(4MHz) PCLK _j ' I ' I ' I ' I
A,0-Al5

Ml

MREQ

RD

RFSH

::i:: ., PMREQ a. :;; .,
iil RAMRDEN
"' PRAS* "'

RASEN,0* or
RASENl*

RAS.0* or
RASl*

MUX*

CAS* ---·

DRA.0-DRA7 xxxzzxxxxx1 ROW ADD. X COL. ADD.)(REFRESH ADD. i
MD.0-MD7 (VALID DATA

Figure 3-9. M1 Cycle Timing (4MHZ) 50ns/dlr.

t) () -~

._, t) •
Tl I T2 I T3

PCLK _J \ I \ I \ I L
Ag-Al5

MREQ

RD

PMREQ

RAMRDEN
:i:: PRAS* .,
a
::E .,

RASEN,0* or ~

<D
.... RASENl*

RAS,0* or
RASl*

MUX*

CAS*
I

DRA,0-DRA7 xxxMR/iNI. ROW ADD. I COL. ADD. w~
MD,0-MD7 VALID DATA

•• :rt 1-11. Memory 1111111 CJcl• Tlllllnl

•

I
Tl I T2 I T3

PCLK _j \ , \ , \ , L
A_0'-Al5

MREQ

WR

::c
!l>
a PMREQ
:E
!l>
~
(D RAMWREN __,
0,

PRAS*

RASEN,0* or
RASENl*

RAS.0* or
RASl*

MUX*

CAS*

DRA,0-DRA7 NNYYYYJ. ROW ADD. X COL. ADD. xxXxxXXX
MD,0-MD7 @ WRITE DATA)

Figure 3-11. Memory Write Cycle Timing

~ 0

Memory Map - Model 4P

Mode0 SEL0 0 - ov Mode 1 SEL0 - 1 - -5V

SEL1 0 ov SEU - 0 - OV

ROM OV ROM - 0 -5V

0000-0FFF Boot ROM 4K 0000-37FF RAM 14K - 1000-37FF RAM (Read Only) 10K 3800-3BFF Keyboard 1K

- 37E8-37E9 Printer Status (Read Only) 2 3C00-3FFF Video 1K

3800-3BFF Keyboard 1K 4000-FFFF RAM 48K

3C00-3FFF Video 1K
4000-FFFF RAM 48K

Mode2 SEL0 - 0 - ov
SEL1 - 1 - +5V

Mode0 SEL0 - 0 - ov ROM =X - DontCare

SEL1 - 0 - 0V

ROM - 0 - --rSV 0000-F3FF RAM 81K
F400-F7FF Keyboard tK

0000-37FF RAM (Read Only) 14K FB00-FFFF Video 2K
37E8-37E9 Printer Status (Read Only) 2
3800-3BFF Keyboard 1K
3C00-3FFF Video 1K Mode3 SEL0 = 1 --sv
4000-FFFF RAM 48K SEU = 1 - +5V

ROM - X - Dont Care

Mode 1 SEL0 - 1 - +SV 0000-FFFF RAM
SEL1 - 0 - ov
ROM - 1 - 0V

0000-0FFF Boot ROM 4K
0000-0FFF RAM (Wnte Only) 4K
1000-37FF RAM 10K
3800-3BFF Keyboard 1K

~
3C00-3FFF Video 1K

_,I
4000-FFFF RAM 48K

Hardware 79

110 Port Assignment

Normally
Port# Used Out In

FC-FF FF CASSOUT · MODIN"
FS-FB FS LPOUT • LPIN"
F4-F7 F4 DRVSEL" (RESERVED)
F0-F3 DISKOUT" DISKIN"
FD F0 FDC COMMAND REG. FDC STATUS REG. -F1 F1 FDC TRACK REG FDC TRACK REG.

F2 F2 FDC SECTOR REG. FDC SECTOR REG.
F3 F3 FDC DATA REG. FDC DATA REG.
EC-EF EC MODOUT" RTCIN"
ES-EB RS232OUT • RS2321N •
ES ES UART MASTER RESET MODEM STATUS
E9 E9 BAUD RATE GEN. REG. (RESERVED)
EA EA UART CONTROL AND UART STATUS REG.

MODEM CONTROL REG.
EB EB UART TRANSMIT UART HOLDING REG.

HOLDING REG. (RESET D.R.)
E4-E7 E4 WR NMI MASK REG. RD NMI STATUS •
E0-E3 E0 WR INT MASK REG. RD INT MASK REG .•
AO-OF (RESERVED) (RESERVED)
9C-9F 9C BOOT" (RESERVED)
94-98 (RESERVED) (RESERVED)
90-93 90 SEN• (RESERVED)
8C-8F GSEL0 • GSEL0.
88-88 CRTCCS" (RESERVED)
88, SA 88 CRCT ADD. REG. (RESERVED)
89.88 89 CRCT DATA REG. (RESERVED)
84-87 84 OPREG • (RESERVED)
80-83 GSEL1 • GSEL1"

0

-
Hardware 80

i

.,

l/0 Port Description

Name: CASSOUT"
Port Address: FC - FF
Access: WRITE ONLY
Description: Output data to cassette or for sound

generation

Note: The Model 4P does not support cassette storage.
this port Is only used to generate sound that was to
be output via cassette port. The Model 4P sends
data to onboard sound circuit.

DO

01

= Cassette output level (sound data output)

= Reserved

02 - 07 = Undefined

Name: MODIN • (CASSIN ·1
Port Address: FC - FF
Access: READ ONLY
Description: Configuration Status

DO = 0

01 = CASSMOTORON STATUS

02 = MODSEL STATUS

03 = ENALTSET STATUS

04 = ENEXTIO STATUS

05 = (NOT USED)

DB = FAST STATUS

07 =O

Name: LPOUT •
Port Address: FB - FB
Access: WRITE ONLY
Description: Output data to line printer

DO - D7 = ASCII BYTE TO BE PRINTED

Name: LPIN.
Port Address: FB - FB
Access: READ ONLY
Description: Input hne printer status

DO - D3 - (RESERVED)

04

05

D6

D7

= FAULT
1 - TRUE
0 = FALSE

= UNIT SELECT
1 = TRUE
0 = FALSE

= OUTPAPER
1 = TRUE
0 = FALSE

= BUSY
1 = TRUE
0 = FALSE

Name: DRVSEL •
Port Address: F4 - F7
Access: WRITE ONLY
Description: Output FDC Configuration

Note: Output to this port will ALWAYS cause a 1-2 mscc.
(Microsecond) wait to the ZBO.

DO = DRIVE SELECT 0

D1

D2

= DRIVE SELECT 1

= (RESERVED)

D3 = (RESERVED)

D4 = SDSEL

D5

0 = SIDE 0
1 = SIDE 1

= PRECOMPEN
O = No write precompensation
1 = Write Precompensation enabled

DB = WSGEN
O = No wait state generated
1 = wait state generated

Note: This wait state is to sync ZSO with FOG chip during
FOC operation.

D7 =ODEN.
0 = Single Densily enabled (FM)
1 = Double Density enabled (MFM)

Hardware 81

Name: DISKOUT•
Port Address: F0 - F3
Access: WRITE ONLY
Description: Output to FDC Control Registers

Port F0 = FOG Command Register

Port F1 = FOG Track Register

Port F2 = FDC Sector Register

Port F3 = FDC Data Register

(Refer to FOC Manual for 811 Assignments)

Name: DISKIN •
Port Address: F0 - F3
Access: READ ONLY
Description: Input FOC Control Registers

Port F0 = FDC Status Register

Port F1 = FOC Track Register

Port F2 = FDC Sector Register

Port F3 = FDC Data Register

(Refer to FDC Manual for Bit Assignment)

Name: MODOUT •
Port Address: EC - EF
Access: WRITE ONLY
Description: Output to Conf1guratIon Latch

DO = (RESERVED)

D1

D2

D3

= CASSMOTORON (Sound enable)
0 = Cassette Motor Off (Sound enabled)
1 = Cassette Motor On (Sound disabled)

= MODSEL
0 = 64 or 80 character mode
1 = 32 or 40 character mode

= ENALTSET
0 = Alternate character set disabled
1 = Alternate character set enabled

04 - ENEXTIO
0 - External 10 Bus dtsabled
1 - External 10 Bus enabled

DS = (RESERVED)

D6 = FAST
0 - 2 MHZ Mode
1 = 4 MHZ Mode

D7 = (RESERVED)

Name: RTCIN.
Port Address: EC - EF
Access: READ ONLY
Description: Clear Real Time Clock Interrupt

D0-D7 ~ DONTCARE

Name: RS232OUT •
Port Address: EB- EB
Access:
Description:

WRITE ONLY
UART Control Data Control Modem Control,
BRG Control

Port ES = UART Master Reset

Port E9 = BAUD Rate Gen Register

Port EA = UART Control Register (Modem Control Reg)

Port EB = UART Transmit Holding Reg

(Refer to Model Ill or 4 Manual for 811 Assignments)

Name: RS232IN •
Port Address: EB - EB
Access: READ ONLY
Description: Input UART and Modem Status

Port EB = MODEM STATUS

Port E9 = (RESERVED)

Port EA = UART Status Register

Port EB - UART Receive Holding Register (Resets DR)

(Refer to Model Ill or 4 Manual for 811 Assignments)

Hardware 82

C

--,.

\ .,

Name: WRNMIMASKREG •
Port Address: E4 - E7
Access: WRITE ONLY
Description: Output NM1 Latch

D0-D5 = (RESERVED)

08 = ENMOTOROFFINT

07

Name:

0 = Disables Motoroff NMI
1 = Enables Motoroff NMI

= ENINTRO
0 = Disables INTRO NMI
1 = Enables INTRO NMI

RDNMISTATUS •
Port Address: E4 - E7
Access: READ ONLY
Description: Input NMl Status

DO = O

D2 - D4 = (RESERVED)

05 = RESET (not needed)
O = Reset Asserted (Problem)
1 = Reset Negated

08 = MOTOROFF

07

Name:

O = Motoroff Asserted
1 = Motoroff Negated

= INTRO
0 = INTRO Asserted
1 = INTRO Negated

WRINTMASKREG •
Port Address: ED - E3
Access: WRITE ONLY
Description: Output INT Latch

DO- D1 = (RESERVED)

D2 = ENRTC
0 = Real time clock interrupt disabled
1 = Real time clock interrupt enabled

D3 = ENIOBUSINT
0 = External 10 Bus interrupt disabled
1 = External 10 Bus interrupt enabled

D4 = ENXMITINT
O = RS232 Xmit Holding Reg. empty int.
disabled
1 = RS232 Xmit Holding Reg. empty int
enabled

DS

D6

D7

= ENRECINT
0 = RS232 Rec Data Reg. full int. disabled
l = RS232 Rec. Data Reg_ full int enabled

- ENERRORINT
O = RS232 UART Error interrupts disabled
1 = RS232 UART Error interrupts enabled

= (RESERVED)

Name: RDINTSTATUS •
Port Address: ED - E3
Access: READ ONLY
Description: Input INT Status

D0-D1 = (RESERVED)

D2 = RTC INT

D3 = IOBUSINT

D4 = RS232 XMIT INT

DS = RS232 REC INT

D6 = RS232 UART ERROR INT

D7 = (RESERVED)

Name: Boor·
Port Address: 9C - 9F
Access: WRITE ONLY
Description: Enable or Disable Boot ROM

DO = ROM·
0 = Boot ROM Disabled
1 = Boot ROM Enabled

D1 - 07 - (RESERVED)

Name: SEN•
Port Address: 90 - 93
Access: WRITE ONLY
Description: Sound output

DO = SOUND DATA

D1 - D7 = (RESERVED)

Hardware 83

Name: OPREG •
Port Address: 84
Access: WRITE ONLY
Description: Output to operation reg.

DO = SELO

D1 = SEL1

SEL1
0
0
1
1

D2 = 8064

SELO
0
1
0
1

O = 64 character mode
1 = 80 character mode

D3 =INVERSE
0 = Inverse video disabled
1 = Inverse video enabled

MODE
0
1
2
3

D4 = SRCPAGE - Points to the page to be mapped
as new page

0 = U64K, L32K Page
1 = U64K, U32K Page

D5 = ENPAGE - Enables mapping of new page

D6

o = Page mapping disabled
1 = Page mapping enabled

= DESPAGE - Points to the page where new
page 1s to be mapped

0 = L64K, U32K Page
1 = L64K, L32K Page

D7 = PAGE
O = Page O of Video Memory
1 = Page 1 of Video Memory

Hardware 84

C

-

J

3.1.8 Video Circuit

The heart of the video display c1rcu1t m the Model 4P 1s the

68045 Cathode Ray Tube Controller (CRTC), U85 The CRTC
Is a preprogrammed v1deo controller that provides two screen

formats 64 by 16 and 80 by 24 The format 1s controlled by pin

3 of the CRTC (8064") The CRTC generates all of the neces
sary signals required for the video display These signals are

VSYNC (Vertical Sync), HSYNC (Honzontal Sync) for proper
sync of the monitor, DISPEN (Display Enable) which 1nd1cates

when video data should be output to the monitor, the refresh
memory addresses (MAO-MA 13) which addresses the video

RAM, and the row addresses (RA0-RA4) which 1nd1cates which
scan hne row 1s being displayed The CRTC also provides hard

ware scrolling by wntmg to the internal Memory Start Address
Register by OUTmg to Port 88H The internal cursor control of

the 68045 1s not used m the Model 4P video cIrcmt

Smee the 80 by 24 screen requires 1,920 screen memory lo
cations, a 2K by 8 static RAM (U82) Is used for the video RAM
Addressing to the video RAM (U82) Is provided by the 68045
when refreshing the screen and by the CPU when updating of
the data Is performed These two sets of address Imes are mul
!lplexed by three 74LS157s (U83, U84, and U104) The multi•
plexers are switched by CATCLK which allows the CATC to

address the video RAM dunng the high state of CRTCLK and
the CPU access during the low state A 10 from the CPU Is con
trolled by PAGE* which allows two display pages m the 64 by
16 format When updates to the video RAM are performed by
the CPU, the CPU 1s held In a WAIT state until the CATC Is not
addressing the video RAM This operation allows reads and
writes to video RAM without causing hashing on the screen
The circurt that performs this function Is a 74LS244 buffer
(U103), an 8 bit transparent latch, 74LS373 (U102) and a Delay
lme cIrcuIt shared wtth Dynamic RAM timing circuit consisting
of a 74LS74 (U95), 74LS32 (U94), 74LS04 (U74), 74LS00
(U96), 74LS02 (U75), and Delay Line (U97) During a CPU

Read Access to the Video RAM, the address Is decoded by the
PAL U109 and asserts VIDEO" low This Is inverted by U74 (1/
6 of 74LS04) which pulls one input of U96 (1/4 of 74LS00) and

m turn asserts VWAIT • low to the CPU RD Is high at this ttme
and 1s latched mto U95 (1 /2 of 7 4LS7 4) on the ns,ng edge of
XAOR7* XADAr IS inverse of CRTCLK which drives the
CRTC (68045), and the address multiplexers U83, U84, and
U104

When RD Is latched by U95 the Q output goes low releasing
WAIT" from the CPU The same signal also ,s sent to the Delay

Line (U97) through U116 (1 4 of 74F08) The Delay line delays
the falling edge 240 ns for VLATCH* wh1ch latches the read

data from the video RAM at U102 The data Is latched so the

CATC can refresh the next address location and prevent any
hashing MAO* decoded by U108 and a memory read Is ORed
with VIDEO* which enables the data from U102 to the data bus

The CPU then reads the data and completes the cycle A CPU

wnte Is shghtly more complex In operation As In the RD cycle,
VIDEO* Is asserted low which asserts VWAIT* low to the CPU

WR IS high at th,s time which IS NANDed With VIDEO and
synced With CRTCLK to create VRAMDIS that disables the

video RAM output On the rising edge of XADR7", WR IS

latched into U95 (1/2 of 74LS74) which releases VWAIT" and

starts cycle through the Delay Line After 30ns DLYVWR" (De
layed video wnte) Is asserted low which also asserts VBUFEN*
(Video Buffer Enable) low VBUFEN" enabled data from the
Data bus to the video RAM Approximately l 20ns later
DLYVWA* 1s negated high which writes the data to the video

RAM and negates VBUFEN" turning off buffer The CPU then
completes WR cycle to the video RAM Refer to Video RAM
CPU Access T1mmg Figure 5-12 for t1mIng of above RD or WA
cycles

Dunng screen refresh, CRTCLK Is htgh allowing the CRTC to
address Video RAM The data out of the video RAM Is latched
by LOAD" into a 74LS273 (U101) D? Is generated by IN·
VERSE" through U125 (1/6 of 74S04), and U123 (1/4 of
74LS08) This decoding determines If character should be al
pha-numenc only (1f inverse high) or unchanged (INVERSE"
low) The outputs of U101 are used as address inputs the char
acter generator ROM (U42) A9 Is decoded with ENALTSET
(Enable Alternate Set) and 07 of U101, which resets A9 to a
low 1f 07 and ENALTSET are high See ENALTSET Control Ta·
ble below

ENALTSET 07 Q6 A9
0 0 0 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 0

Hardware 85

RD CYCLE

I
WR CYCLE

Tl I T2 I TW I T3 Tl I T2 I TW I TW I T3 I Tl

1nnnnnn nnnnnnn nnnnn,
2,0M

PCLK* J I I \ I \ I \ I \ j \ I \ I ' j ' j ' r
A,0-Al5

MREQ

RD

WR

CRTCLK
:c
"' a.

XADR7* :;

"' ~ CD
(X) VIDEO* "'

VIDEO

U95.8

VWAIT*

VRAMDIS

DLYVWR*

VBUFEN*

VLATCH*

Ul,02.1

Figure 3-12. Video RAM CPU Access Timing

f' 0 I)

\

RAO-RA3 row addresses from the CRTC are used to control
which scan hne Is bemg displayed The Model 4P has a 4-brt full
adder 74LS283 (U61) to modify the Row address During a
character display DLYGRAPHIC* Is high which apphes a high to
all 4 bits to be added to row address This will result m subtract
ing one from Row address count and allow all characters to be
displayed one scan hne lower The purpose Is so mverse char
acters will appear wIthm the inverse block When a graphic
block IS displayed DLYGRAPHIC* IS low which causes the row
address to be unmodified Movmg Jumper from E14-E15 to
E15-E16 will disable this cIrcUtt

DLYCHAR• and DLYGRAPHICS are inverse signals and con
trol which data ,s to be loaded into the shift register U63
When DLYCHAR· IS low and DLYGRAPHIc· IS htgh, the
Character Generator ROM (U42) ,s enabled to output data
when DLYCHAW IS htgh and DLYGRAPHIc· IS low the
graphics characters from U41 (74LS15) ,s buffered by U43
(74LS244) to the shift register The data ,s loaded into the
shift register on the nsmg edge of SHIFT* when LOADS* Is
low Blanking Is accomphshed by maskmg off LOADS* so no
data will be loaded and zero data will be shifted out with the
senal mput of U63, pm 1, grounded Senal video data Is out
put U63 pin 13 and Is mixed with mverse and/or hires graph
ics tnformalton by (1/4 or 74LS86) U143 The video data ,s
then mixed with a 007 Rate clock, either DOT* and DCLK,
to create dIstInct dots on the monitor DOT* and OCLK are
mverse signals and are provided to allow a choice to obtain
the best video results The video InformatIon Is filtered by
F34, R45 (47 ohm resistor), and C241 (100 pf Cap) and out
put to Vldeo monitor VSYNC and HSYNC are buffered by
(1/2 of 74LS86) U143 and are also output to video monitor
Refer to Video C1rcu1t TImmg Figure 3-13, Video Blanking
TImmg Figure 3-14, and Inverse Video TIm1ng Figure 3-15
for tImIng relat1onshrps of Video C1rcu1t

3.1.9 Keyboard

The keyboard interface of the Model 4P consists of open col
lector dnvers which dnve an 8 by 8 key matnx keyboard and an
inverting buffer which buffers the key or keys pressed on the
data bus The open collector dnvers (U56 and U57 (7416) are
driven by address Imes AO-A? which dnve the column Imes of
the keyboard matrix The ROW Imes of the keyboard are pulled
up by a 1 5 kohm resistor pack RP2 The ROW Imes are buff
ered and inverted onto the data bus by U58 (74LS240) which IS

enabled when KEYBO* IS a logic low KEYBD* IS a memory
mapped decode of addresses 3B00-3BFF m Model Ill Mode
and F400-F7FF ,n Model 4/4P mode Refer to the Memory Map
under Address Decode for more information During real time
operation, the CPU will scan the keyboard penodIcally to check
1f any keys are pressed If no key Is pressed, the resistor pack
RP2 keeps the mputs of U58 at a logic high U58 inverts the
data to a logic low and buffers It to the data bus which Is read
by the CPU If a key Is pressed when the CPU scans the correct
column hne, the key pressed will pull the corresponding row to
a logic low U58 inverts the signal to a logic high which Is read
by the CPU

3.1.10 Real Time Clock

The Real Time Clock ClrCUlt in the Model 4P provides a 30 Hz
(tn the 2 MHz CPU mode) or 60 Hz (tn the 4 MHz CPU mode)
mterrupt to the CPU By counting the number of rnterrupts that
have occurred, the CPU can keep track of the time The 60 Hz
vertical sync signal (VSYNC) from the video cIrcuItry Is used for
the Real Time Clocks reference In the 2 MHz mode, FAST Is
a logic low which sets the Preset input, ptn 4 of U22 (74LS74),
to a logic htgh Thts allows the 60 Hz (VSYNC) to be dtvtded by
2 to 30 Hz The output of 1 /2 of U22 Is ORed with the ongmal
60 Hz and then clocks another 74LS74 (1/2 of U22) If the real
time clock ,s enabled (ENRTC at a logic high), the interrupt ts
latched and pulls the INr ltne low to the CPU When the CPU
recognizes the interrupt, the pulse Is counted and the latch re
set by pulling RTCtN· low In the 4 MHz mode, FAST IS a logic
htgh which keeps the ftrst half of U22 tn a preset state (the a·
output at a logic low) The 60 Hz ,s used to clock the interrupts

NOTE: If interrupts are disabled, the accuracy of the real
time clock wlll suffer

3.1.11 Line Printer Port

The Line Pnnter Port Interface consists of a pulse generator, an
eIght-bIt latch, and a status hne buffer The status of the hne
printer ,s read by the CPU by enabling buffer U3 (74LS244)
This buffer Is enabled by LPRD" which Is a memory map and
port map decode In Model Ill mode, only the status can be read
from memory location 37E8 or 37E9 The status can be read m
all modes by an input from ports FB-FB For a hstIng of the bit
status, refer to Port Map section

After the pnnter dnver software determines that the pnnter Is
ready for pnntmg (by read mg the correct status), the characters
to be printed are output to Port F8-FB U2, a 74LS374 e1ght-bIt
latch, latches the character byte and outputs to the hne prmter
One-half of U1 (74LS123), a one-shot, ,s then triggered which
generates an appropnate strobe signal to the pnnter which sIg
n,fIes a valid character Is ready The output of the one-shot Is
buffered by 116th of the U21 (74LS04) to prevent noise from the
pnnter cable from flase-tnggenng the one-shot

Hardware 87

CRTCLK

U82 i SRAi-SRAli

U82 --IVALID DATA'
SDR.0-SDR7

LOAD* 7J
:i: U42
Ill CGA3-CGA1S a.
:!:
Ill m al CHAR co co

DLYCHAR*

DLYGRAPHIC*

U42
CGD~-CGD7

D.0-DR from
LS244 (U43l

SHIFT*

SHFT/10
U63.15

U63 .13

f'

CPU ADD, y
VALID 3

w•vHOR"'S

-= ~

\'"'~

~. ·;•:':':..
_/lfll ~~ ... Qt

'""'"0"

CRTC ADD.

~~

h•8•

w,,,.a.,.
<,QfflH ta l

W,1tCn
<,n.,l10"

X
(vALID DATAYll

u

·-L~ ·~~·
w'£lii,j.,Z :.: ,' ::~;.

-,
___ 1-

--~•,..-,

CPU ADO,

-· l"•"~' ~ , .•.•

X
I VALID DATA~

CRTC ADD. y CPO ADD. t
(vALID DATA Y'f1 l'1ALID DATA'

LI

WXMXXMXXMYYX&YI MXXX&Ytl?XXXvxXXXXXW Exxxxxxxx'lvxMxx

lMYWXxxXYU VALID DATA mxx»> «xxxxxxmxxxx*=
VALID DATA

Figure 3-13. Video Circuit Timing

0 I)

::r:
"' a.
i
ro
ffi

IJ \..) 9)

CRTCLK \ I \ , \ I \ I L
SRA.0~:;Al.0 J CPU ADD. JcRTC Aoo.J ~f JCRTC ADD.I CPU ADD.JcRTc ADD.J CPU ADD. ICRTC ADD.J CPU ADD. IcRTC Aoo.L

U82
SRD.0-SRD7

LOAD*

U42
CGA3-CGA1~

U42
CGD~-CGD7

SHIFT*

LOADS*

DISPEN

OLYDISPEN

DLYBLANK

SHFT/L0
U63.15

0143.8

u u
X c X

u
X X

\.,

C
1/llNxM nm tXXXM »:XXXXM txxm m

_____ ____,r
_____ ____,r'

f

'

u u u u-

; u u--
-:n::rrn:xrrrrrt,1;arm rarrJ:J::J::J::

Figul'9 3-14. Video Blalllclng Tlmllll

:c

t
:g

CRTCLK I I \ I \ I \ I
ua2 cRTC Aoo-l cPu ADD. lcRTc Aoo.l

SRA~-SRAl~

U82
SRO~-SRD7

LOAD*~ u u u
042 =:x

CGA3-CGA1~ X X X
U42

CGD,0-CGD7

SHIFT*

SHFT/LO 7J
063.15

INVERSE

U81.12

UBl. l~

U81.15

Ul43.l~

Ul43.9

Ul43.8

DOT* or
DCLK

VOUT

f'

.ll

mm Y@'M/,'f(MXXW mxxnxi

u u u

MWYYYXXXX\I iXXmX&WXI MXXXXM&W tMM

Figure 3-15. Inverse Video Timing

0

\ I \

u u
X r:::

WWxW\1 m:

u u

I)

j

;s, 1.,., \:irapmcs l'On

The Graphics Port (J7) on the Model 4P 1s prov1ded to attach
the optional Graphics Board The port provides 00-07 (Data
Lines), A0-A3 (Address Lines), IN". GEN" and RESET" for the
necessary interface signals for the Graphics Board GEN. 1s
generated by negative ORing Port selects GSEL0" (8C-8FH)
and GSELi' (80-83H) together by (1 4 of 74LS08) U23 The re
sulting signal IS negative ANDed with IORQ' by (1 4 of 74S32)
U62 Seven t1m1ng signals are provided to allow synchrornza
t1on of Mam Logic Board Video and Graphics Board Video
These timing signals are VSYNC, HSYNC, DISPEN, DCLK, H,
I, and J Three control signals from the Graphics Board are
used to sync to CPU access and select different video modes
WAIT* controls the CPU access by causing the CPU to WAIT till
video 1s 1n retrace area before allowing any wntes or reads to
Graphics Board RAM ENGRAF 1s asserted when Graphics
video 1s displayed ENGRAF also disables mverse video mode
on Mam Logic Board Video CL 166" (Clear 74L 166) Is used to
enable or disable m,xmg of Mam Logic Board Video and Graph
ics Board Video If CU 66" Is negated high, then mIxrng Is al
lowed mall for video modes 80 x 24, 40 x 24, 64 x 16, and 32 x
16. It CL 166" Is asserted low, this will clear the video shift reg
ister U63, which allows no video from the Main Logic Board In
this state 8064* Is automatically asserted low to put screen In
80 x 24 video mode Refer to Figure 3-16 Graphic Board
Video Ttmmg for tImmg relatIonshIps Refer to the Model 4/
4P Graphics Board Service mformatIon for service or techrn
cal information on the Graphics Board

3.1.13 Sound

The sound cIrcuIt m the Model 4P Is compatible with the Sound
Board which was optional m the Model 4 Sound Is generated
by alternately setting and cleanng data bit DO dunng an OUT to
port 90H The state of DO IS latched by U130 (1/2 of a 74LS74)
and the output Is amphf,ed by 02 which dnves a pIezoelectnc
sound transducer The speed of the software loop determines
the frequency, and thus, the pitch of the resulting tone Smee
the Model 4P does not have a cassette circuit, some existing
software that used the cassette output for sound would have
been lost The Model 4P routes the cassette latch to the sound
board through U 142 When the CASSMOTORON signal Is a
logic low, the cassette motor Is off, then the cassette output Is
sent to the sound circuit

3.1.141/0 Bus Port

The Model 4P Bus Is designed to allow easy and convenient m
terfac1ng of 1/0 devices to the Model 4P The I O Bus supports
all the signals necessary to implement a device compatible with
the Z80s 1/0 structure

Aoaresses

AO to A7 allow selection of up to 256" input and 256 output
devices 11 external I O Is enabled

•-Ports 80H to 0FFH are reserved for System use

Data

080 to D87 allow transfer of 8-b1t data onto the processor
data bus Is external I O Is enabled

Control Lmes

M1 • - Z80A signal specIfyrng an M1 or Operation Code
Fetch Cycle or with IOREQ*, 11 specifies an Interrupt
acknowledge

2 IN* - Z80A signal specifying than an mput Is m progress
Logic AND of IOREQ' and WR'

3 OUT* - ZB0A signal specifying that an output 1s In prog
ress Logic AND of IOREQ" and WR"

4 IOREO" - ZB0A signal specIfyIng that an input or output
Is in progress or with M1 •, It specIf1es an interrupt
acknowledge

5 RESET* - system reset signal

6 IOBUSINT* - input to the CPU s,gnahng an interrupt from
an l/O Bus device 11 l/O Bus mterrupts are enabled.

7 IOBUSWAIT* - input to the CPU wait hne allowing 1/0 Bus
device to force wa,t states on the ZB0 If external 1/0 Is
enabled

8 EXTIOSEL * - input to 1/0 Bus Port c1rcu1t which switches
the l/O Bus data bus transceiver and allows and INPUT m
struct1on to read l/O Bus data

The address ltne, data hne, and all control hnes except RESET*
are enabled only when the ENEXIO bit In port EC is set to one

To enable 110 interrupts, the ENIOBUSINT bit In the PORT E0
(output port) must be a one However, even If It Is disabled from
generating interrupts, the status of the IOBUSINT* hne can still
read on the appropriate bit of CPU IOPORT E0 (input port)

See Model 4P Port Bit assignments tor port OFF, 0EC, and 0E0

Hardware 91

GRAFVID y I I y l y I ~ I y C
ENGRAF

Ul43.l~ ~ X X I 1 C7f
Ul43.9 l I I I C} 0 Y. x-:

:c CL166*
Ol

i Ul43.8-..) Ol 1 CJ. 1 I I u Cl C'J y
~
(1)

"' "' DOT* or
DCLK

VOUT] i l i l i x l i l i l i Xl i l □ I l i \

.... •11. lolfd WIN 1'11111114

(0 •

j

.,

The Model 4P CPU board 1s fully protected from foreign I Ode

vices In that all the I O Bus signals are buffered and can be dis
abled under software control To attach and use and I O device

on the IO Bus certain requirements (both hardware and soft
ware) must be met

For input port device use, you must enable external 1/0 de

vices by writing to port OECH with bit 4 on in the user soft
ware. This wilt enable the data bus address Imes and control

signals to the 1/0 Bus edge connector. When the input de
vice is selected, the hardware should acknowledge by as
serting EXTIOSEL • low. This switches the data bus
transceiver and allows the CPU to read the contents of the I/
0 Bus data lines. See Figure 3• 17 for the timing. EXTIO·
SEL • can be generated by NANO,ng IN and the 1/0 port
address.

Output port device use 1s the same as the input port device m
use, m that the external I 10 devices must be enabled by wntmg

to port 0ECH with bit 4 on m the user software - m the same
fashion

For either input or output devices. the IOBUSWAIT' control hne
can be used m the normal way for synchrornzmg slow devices
to the CPU Note that since dynamic memones are used In the

Model 4P, the wait lme should be used with caution Holding the
CPU ma wait state for 2 msec or more may cause loss of mem
ory contents since refresh Is mh1bIted dunng this time It Is rec
ommended that the IOBUSWAIT* hne be held actrve no more
than 500 µsec with a 25%, duty cycle

The Model 4P will support 280 Mode 1 interrupts A RAM 1ump
table Is supported by the LEVEL II BASIC ROMs image and the
user must supply the address of his interrupt service routine by

wntmg this address to locations 403E and 403F When an in
terrupt occurs, the program will be vectored to the user-sup
plied address If l•O Bus interrupts have been enabled To
enable \10 Bus interrupts, the user must set bit 3 of Port 0E0H

3.1.15 FDC Circuit

The TRS-80 Model 4P Floppy Disk Interface provIces a stan
dard 5-1 4" floppy disk controller The Floppy Disk Interface
supports both single and double density encoding schemes
Write precompensatIon can be software enabled or disabled
beg1nnmg at any track, although the system software enables
wnte precompensatIon for all tracks greater than twenty-one

The amount of wnte precompensatIon Is 250 nsec and rs not
adJustable The data clock recovery logic incorporates a dIg1tal
data separator which achieves state-of-the-art relIabIhty One
or two dnves may be controlled by the mterface All data trans
fers are accomphshed by CPU data requests In double density
operation, data transfers are synchronized to the CPU by fore
mg a wait to the CPU and clearing the wait by a data request
from the FDC chip The end of the data transfer 1s 1nd1cated by
generation of a non-maskable interrupt from the interrupt re

quest output of the FDC chip A hardware watchdog timer in

sures that any error cond1t1on will not hang the wait lme to the
CPU for a penod long enough to destroy RAM contents

Hardware 93

Input or Output Cycles.

T, T, T.· T,

Af A7 PORT ADDRESS

Ao·

DATA BUS ,.

WAIT"

WA•

DATA BUS OUT

·1nwnt'd by Z80 CPU

Input or Output Cycles with Wait States.

T, ,, ' .. ,.

Af A7 PORT ADDRESS

DATA BUS

AO•

WAIT"

DATA BUS OUT

WA"

+EXTIOSEL 0

·1,...,nt'd by Z80 CPU

tCo,ncid•nt wnh IOR0° only on INPUT cycle

Figure 3-17. 1/0 Bus Timing Diagram

Hardware 94

,,

T,

READ
CYCLE

WIUTIE
CYCLE

READ
CYCLE

l WA"<
CYCLE

---1----

•

C

•

.,

Control and Data Buffering

The Floppy Disk Controller Board 1s an IO port-mapped dev1ce

which utIhzes ports E4H FOH F1 H F2H F3H and F4H The
decoding logic 1s implemented on the CPU board (Refer to Par

agraph 5 1 5 Address Decoding for more mformat1on on Port
Map) U31 1s a br-d1rect1onal 8-brt transceiver used to buffer

data to and from the FDC and RS-232 c1rcu1ts The dIrectIon of
data transfer 1s controlled by the combInatIon of control signals

DISKIN. and RS232IN" If either signal 1s active (logic low) U31

Is enabled to dnve data onto the CPU data bus If both signals
are inactive (logic high), U31 ts enabled to receive data from the
CPU board data bus A second buffer (U 12) 1s used to buffer the

FOG chip data to the FOG RS232 Data Bus (800-807), U121s
enabled all the time and It s dIrectIon controlled by DISKIN"

Again, 11 DISKIN. Is active {logic low) data 1s enabled to dnve
from the FDC chip to the Mam Data Susses If DISKIN" Is In•

active (logic high) data Is enabled to be transferred to the FDC
chip

Nonmaskable Interrupt Logic

Dual O fhp-flop U100 {74LS74) IS used to latch data bits 06 and
07 on the nsmg edge of the control signal WRNMIMASKREG.

The outputs of U100 enable the cond1tIons which w1II generate
a non-maskable mterrupt to the CPU The NMI mterrupt con
d1t1ons which are programmed by doing an OUT instruction to
port E4H with the appropriate bits set If data bit 7Is set, an FOG
mterrupt Is enabled to generate an NMI interrupt If data bit 7 Is
reset interrupt requests request from the FDC are disabled If
data bit 6 Is set a Motor Time Out Is enabled to generate an
NMI mterrupt If data bit 61s reset interrupts on Motor Time Out
are disabled An IN mstructIon from port E4H enables the CPU
to determine the source of the non-maskable mterrupt Data bit
7 mdIcates the status of FOC mterrupt request {INTRO)
(0 ==- true 1 - false) Data bit 6 IndIcates the status of Motor
Time Out (0- true, 1 -false) Data bit 5 mdIcates the status of
the Reset signal (0 - true, 1 - false) The control signal

RONMISTATUS· gates this status onto the CPU data bus when
active (logic low)

Drive Select Latch and Motor ON Logic

Selecting a dnve pnor to disk I O operation Is accomphshed by
doing an OUT Instruclton to port F4H with the proper btt set The
following table descnbes the bit al1ocatIon of the Onve Select
Latch

Data Bit Function
DO Selects Drrve O when set·

01 Selects Onve 1 when set·

02 Selects Onve 2 when set·

03 Selects Onve 3 when set·

04 Selects Side O when reset

Selects Side 1 when set
05 Wrrte precompensat1on enabled when set

disabled when reset

06 Generates WAIT 1f set

07 Selects MFM mode 1f set

Selects FM mode If reset

·only one of these bits should be set per output

Hex D fhp-flop U32 (74L 174) latches the dnve select bits side

select and FM" MFM bits on the nsmg edge of the control signal
DRVSEL' A dual D flip-flop (U98) Is used to latch the Wait En

able and Write precompensat,on enable bits on the nsmg edge
of DRVSEL" The ns1ng edge of DRVSEL" also tnggers a one

shot (1 2 of U54 74LS123) which produces a Motor On to the
disk dnves The duration of the Motor On signal Is approxI·

mately three seconds The spindle motors are not designed for
continuous operation Therefore, the inactive state of the Motor

On signal 1s used to clear the Drive Select Latch, which de·se·
lects any dnves which were previously selected The Motor On

one-shot Is retnggerable by simply executmg another OUT m·
structIon to the Dnve Select Latch

Wait State Generation and WAITIMDUT Logic

As previously mentioned, a wait state to the CPU can be InItI•
ated by an OUT to the Dnve Select Latch with D6 set Pin 5 of
U98 wtll go high after th1s operation This signal Is inverted by
1 4th of U79 and Is routed to the CPU where 1t forces the Z80A
into a wait state The ZBOA will remain in the wait state as long
as WAIT* Is low Once 1n1tIated, the WAIT* will remam low until

one of five condItIons Is satIsfIed One half of U77 (a five input
NOR gate) Is used to perform this function INTO DAO, RE·
SET, GLRWAIT, and WAITIMOUT are the inputs to the NOR
gate If any one of these inputs Is active (logic htgh) the output
of the NOR gate (U77 pin 5) will go low This output Is tied to the
clear mput of the wait latch When this signal goes low, ti will
clear the O output (U98 pin 5) and set the o· output (U98 pm
6) This condIt1on causes WAIT* to go high which allows the
280 to exit the wait state U99 ts a 12-bit bmary counter which
serves as a watchdog timer to insure that a wait condItIon will
not persist long enough to destroy dynamic RAM contents The
counter Is clocked by a 1 MHz clock and Is enabled to count

when its reset pm Is low (U99 pm 11) A logic high on U99 pm
11 resets the counter outputs U99 pm 15 Is a d1v1de-by· 1 024
output and Is used to generate the signal WAITIMOUT This
watchdog timer logic will lImIt the duration of a wait to
1024µsec, even If the FDC chip should fail to generate a DAO
oran INTRO

If an OUT to Dnve Select Latch Is InItIated with 06 reset (logic
low), a WAIT Is still generated The 12-bit binary counter will
count to 2 which will output CLRWAIT and clear the WAIT state
This allows the WAIT to occur only dunng the OUT InstructIon

to prevent vIolatmg any Dynamic RAM parameters

NOTE: This automatic WAIT w1II cause a 1-2 µsec wait each
time an out to Dnve Select Latch ,s performed

Hardware 95

Clock Generation Logic

A 4 MHz crystal oscillator and a 4-bit bmary counter are used to

generate the clock signals required by the FDC board The 4
MHz osctllalor 1s implemented with two inverters (1 3 of U39)
and a quartz crystal (Y2) The output of the oscI1lator Is inverted

and buffered by 1 6 of U39 to generate a TTL level square wave

signal U37 1s a 4-bit binary counter which 1s d1v1ded mto a d1-

vIde-by-2 and a d1v1de-by-8 section The d1v1de-by-2 section Is

used to generate the 2 MHz output at pm 12 The 2 MHz 1s

NANOed with 4MHz by 1 4 of U19 and the output ts used lo
clock the dIvIde-by-8 section of U37 A 1 MHz clock Is gener

ated at pin 9 of U37 which 1s 90 phase-shifted from the 2 MHz
clock Thts phase relatIonshIp Is used to gale the guaranteed

Wnte Data Pulse (WD) to the Wnte precompensatIon circuit
The 4 MHz Is used to clock the d1g1tal data separator U18 and
the Wnte precompensatIon shift register USS The 1 MHz clock
,s used to dnve the clock input of the FDC chip (U13) and the
clock mput of the watchdog timer (U99)

Disk Bus Output Drivers

High current open collector dnvers U20 and U56 are used to
buffer the output signals from the FOC cIrcuIt to the disk dnves

Write Precompensation and Write Data Pulse Shap
ing Logic

The Wrrte PrecompensalIon logic ,s compnsed of USS
(74LS195) 1 4 of U19 (74LSOO) 1 4 of U74 (74LS04) and
1 2 of U77 (74LS260) USS Is a parallel m senal out shift reg
ister and Is clocked by 4 MHz which generates a precompen
satIon value of 250 nsec The output signals EARLY and LATE
of the FOC chip (U13) are input to PO and P2 of the shift reg
ister A third signal 1s generated by 1 4 of U75 when neither
EARLY nor LATE Is active low and IS mput to Pl of USS WO of
the FOC chip Is NANDed with 2 MHz to gate the guaranteed
Wnte Data Pulse to USS for the parallel load signal SHFT LO
When USS pin 9 Is acttve low the signals preset at Pl -P3 are
clocked m on the ns,ng edge of the 4 MHz clock After USS pm
9 goes high the data Is shifted out at a 250 nsec rate EARLY
wI1I generate a 250 nsec delay NOT EARLY ANO NOT LATE
will generate a 500 nsec delay and LATE will generate a 750
nsec delay This provides the necessary precompensatIon for
the wnte data As mentioned previously Wrrte Precompensa
tIon Is enabled through software by an OUT to the Dnve Select
Latch with bit 5 set This sets the O output of the 74LS74 (U98
pm 9) which Is ANOed with ODEN which disables the shift reg
ister USS ODEN disables Wnte Precompensallon In the single
density mode The resulting signal also enables U7S to allow
the wnte data (WD) to bypass the Write Precompensat1on cir
cutl The Write Data (WO) pulse Is shaped by a one-shot (1 2 of
U54) which stretches the data pulses to approximately 500
nsec

Hardware 96

0

•

f

I ..
:.
I
ii:

N N ;;; N Q :c :c
!:! i ~ :I :E ... N,;

i !:l

= ...
:)

•
Hardware 97

Clock and Read Data Recovery Logic

The Clock and Read Data Recovery Logic 1s comprised of one
chip U18 (FDC9216) The FDC92161s a Floppy Disk Data Sep•

arator (FOOS) which converts a single stream of pulses from
the disk drive mto separate clock and data pulses for input to

the FDC chip The FOOS consists of a clock dIvIder a long-term
t1m1ng corrector a short-t1me t1m1ng corrector and reclockmg

circuitry The reference clock (REFCLK) 1s a 4 MHz and 1s d1-
v1ded by the internal clock d1v1der COO and CD1 of the FOOS

chip control the dIvIsor which dIvIdes REFCLK With DC1
grounded (logic low), COO (when a logic low) generates a dI

vIde-by-1 for MFM mode and when logic high generates a dI
vIde-by-2 for FM mode COO 1s controlled by the signal ODEN.

which Is Double Oens1ty enable or MFM enable The FOOS de•
tects the leading edges of Ro· pulses and adJusts the phase of
the internal clock to generate the separated clock (SEPCLK) to
the FDC chip The separate long and short term timing correc
tors assure the clock separation to be accurate The separated

Data (SEPO.) Is used as the R□□• input to the FOC chip

Floppy Disk Controller Chip

The 1793 Is an MOS LSI device which periorms the functmns
of a floppy disk formatter1controller In a single chip 1mplemen
tat1on The following port addresses are assigned to the internal
registers of the 1793 FDC chip

Port No.
FOH
F1H
F2H
F3H

Function
Command Status Register
Track Register

Sector Register
Data Register

3.1.16 RS-232-C Circuit

RS-232C Technical Description

The RS-232C cIrcuIt for the Model 4P computer supports asyn
chronous serial transmIssIons and conforms to the EIA RS-
232C standards at the input-output interface connector (J4)
The heart of the cIrcuIt Is the TR1865 Asynchronous Receiver
Transmitter U30 It performs the JOb of converting the parallel
byte data from the CPU to a serial data stream mclud1ng start
stop, and panly bits For a more detailed descnpt1on of how this
LSI circuit performs these functions refer to the TR1865 data
sheets and applIcatIon notes The transmit and receive clock
rates that the TR 1865 needs are supplied by the Baud Rate
Generator U52 (BR1941L) or (BR1943) This c1rcuIt takes the
5 0688 MHz supphed by the system timing cIrcuIt and the pro
grammed information received from the CPU over the data bus
and dlVldes !he basic clock rate to provide two clocks The rates
available from the BAG go from 50 Baud to 19200 Baud See
the BAG table for the complete hst

BAG Programming Table

Transmit
Receive Supported

Nibble Baud 16X by
Loaded Rate Clock SETCOM

OH 50 0 8 kHz Yes
1H 75 1 2 kHz Yes
2H 110 1 76 kHz Yes
3H 134 5 2 1523 kHz Yes
4H 150 2 4 kHz .,.
SH 300 4 8 kHz Yes
6H 600 96 kHz Yes
7H 1200 19 2 kHz Yes
8H 1800 28 8 kHz Yes
9H 2000 32 081 kHz .,.
AH 2400 38 4 kHz Yes
BH 3600 57 6 kHz Yes
CH 4800 76 8 kHz Yes

DH 7200 1152kHz Yes
EH 9600 153 6 kHz Yes
FH 19200 307 2 kHz Yes

The RS·232C circuit Is port mapped and the ports used are ES
to EB Following 1s a descnptIon of each port on both input and

output

Port Input Output
E8 Modem status Master Reset, enables UART

control register load

EA UART status UART control register load and
modem control

E9 Not Used Baud rate register load enable
bit

EB Receiver Holding Transmitter Holding register

register

Interrupts are supported m the RS·232C circwt by the Interrupt
mask register (U92) and the Status register (U44) which allow
the CPU to see which kind of interrupt has occurred Interrupts
can be generated on receiver data register full, transmitter reg•
Ister empty, and any one of the errors-panty, framing, or data
overrun This allows a mmImum of CPU overhead m transfer•
nng data to or from the UART The interrupt mask register Is

port EO (wnte) and the interrupt status register Is port EO (read)
Refer to the 10 Port description for a full breakdown of all inter•
rupts and their bit pos1tIons

Hardware 98

•

0

•

All Model I, Ill. and 4 software written for the RS-232-C mtertace
is compatible with the Model 4P RS-232-C circuit. provided the
software does not use the sense switches to configure the in·
terface. The programmer can get around this problem by di·
rectly programming the BAG and UART for the desired
configuration or by using the SETCOM command of the disk
operating system to configure the interiace . The TRS-80 RS-
232C Interlace hardware manual has a good discussion of the
RS·232C standard and specific programming examples (Cat·
a log Number 26-1145).

Pinout Listing

The following list is a pinout description of the 08-25 connector
(P1).

Pin No. Signal
1 PGND (Protective Ground)
2 TD (Transmit Data)
3 RD (Receive Data)
4 ATS (Request to Send)
5 CTS (Clear To Send)
6 DSR (Data Set Ready)
7 SGND (Signal Ground)
8 CO {Carrier Detect)

19 SRTS (Spare Request to Send)
20 DTR (Data Terminal Ready)
22 RI (Ring Indicate)

Hardware 99

0

•

SECTION IV

4P GATE ARRAY THEORY OF OPERATION

•
Hardware 101

-

0

,,.-

•

I

4.2 MODEL 4P GATE ARRAY THEORY OF
OPERATION

4.2.1 Introduction

Contained 1n the following paragraphs 1s a descnptIon of the
component parts of the Model 4P CPU Gate Array H 1s d1v1ded
mto the logical operational functions of the computer All com
ponents are located on the Mam CPU board msIde the case
housing Refer to Section 3 for disassembly assembly
procedures

4.2.2 Reset Circuit

The Model 4P reset circuit provides the neccessary reset
pulses to all c1rcwts durmg power up and reset operations R25
and C214 provide a time constant which holds the input of U121
low dunng power-up This allows power to be stable to all cir
cuits before the RESEr and RESET signals are apphed When
C214 charges to a logic high, the output of U121 triggers the
input of a retnggerable one-shot multtv1brator (U1) U1 outputs
a pulse with an approximate width of 70 m1crosecs When the
reset switch Is pressed on the front panel, this discharges C214
and holds the mput of U121 low until the switch Is released On
release of the switch, C214 again charges up tnggenng U121
and U1 to reset the mIcrocomputer Another signal POWRSr
Is generated to clear dnve select circwt Immed1atety when
reset switch Is pressed

4.2.3 CPU

The central processmg unit (CPU) of the Model 4P microcom
puter Is a Z80A microprocessor The ZS0A Is capable of run
ning in either 2 MHz or 4 MHz mode The CPU controls all
functions of the microcomputer through use of its address hnes
(A0-A15), data hnes (D0-D7), and control hnes (IM1, IOREQ
RD, WR, 'MREQ, and IRFSH) The address lines (AO-A 15)

are buffered to other ICs through two 74LS244s (U67 and U27)
which are enabled all the time with their enables pulled to GNO
The control Imes are buffered to other ICs through a 74F04
(U87) The data ltnes (00-07) are buffered through a bI-d1rec
t1onal 74LS245 (U86) which Is enabled by BUSEN" and the dI•
rectIon Is controlled by BUSOIR"

4.2.4 System Timing

The mam t1mmg reference of the microcomputer, with the
exception of the FDC cIrcuIt, Is generated by a Gate Array
U148 and a 20 2752 MHz Crystal This reference Is mter
nally dIv1ded tn the Gate Array to generate all necessary tim
ing for the CPU, video cIrcuIt, and RS-232-C circwt The
CPU clock 1s generated U 148 which can be either 2 or
4MHz depending on the logic state of FAST mput (pm 6 of
U148) If FAST Is a logic low, the U148 generates a 2 02752
MHz clock If FAST Is a logic high U148 generates a
4 05504 MHz signal PCLK (pin 23 of U148) IS filtered
through a femte bead (FB2) and 22!! Resistor (R9) and then

fed to lhe CPU U45 PCLK is generated as a symmetncal
clock and Is never allowed to be short cycled (eg) Not al
lowed to generate a low or high pulse under 110
nanoseconds

4.2.4.1 Video Timing

The video !lmmg Is also generated by U148 with the help of a
PLL MultIplIer Module (PMM) U1 46 These two ICs generate all
the necessary !lmmg signals for the four video modes 64 x 16,
32 x 16 80 x 24 and 40 x 24 Two reference clocks are required
for the four video modes One reference clock Is 1 0 1376 MHz
It is generated internally to U148, and Is used bythe64 x 16 and
32 x 16 modes The second reference clock Is a 12 672 MHz
(12M) clock which IS generated by the PMM U146 12M clock
Is used by the 80 x 24 and 40 x 24 modes A 1 2672 MHz
(1 2M16) signal Is output from pm 3 of U148 and Is generated
from the master reference clock, the 20 2752 MHz crystal
1 2M 16 Is used for a reference clock for the PMM The PMM Is
mternally set to oscillate al 12 672 MHz which Is output as 12M
U148 dIvIdes 12M by 10 to generate a second 1 2672 MHz
clock (1 2M10) which IS fed into pin 5 of U146 (PMM) The two
1 2672 MHz signals are mternally compared m the PMM where
ti corrects the 12 672 MHz output so 11 Is synchronized with the
20 2752 MHz clock

MODSEL and 8064" signals are used to select the desired
video mode 8064 • controls which reference clock Is used by
U127 and MODSEL controls the smgle or double character
width mode Refer to the following chart for selectmg each
video mode

8064" MODSEL Video Mode

0 0 64 X 16

0 1 32 X 16

1 0 80 x24

1 1 40 X 24

*This Is the state to be wntten to latch UBS Signal 1s inverted
before being input to U 148

Hardware 103

::c .,
a.
i
al -~

T

A

TIMING CPU C

D

A= ADDRESS LINES
C = CONTROL LINES
D = DATA LINES
T = TIMING

•

A - A
a:

C "' C
D

::,
D al

,__

~
......E.. ROM

D

i"'~MO
i

-
CRTC .
AND i-,

VIDEO
VIDEO PORT

- CIRCUIT

VIDEO i. SOUND

I~

RAM PORT
-

*
•• GRAPHICS

RAM BOARD

'~~
, __

PORT -

-
I/O LINE
DECODE

,_
PRINTER

~ PORT

Figure 4-1. Model 4P Full I 1'111 --~Ci·•

l)

-~ RS232
i-

ri SERIAL
CHIP

•
- DISK _I_

•• CONTROLLER
~

Hi)~ CHIP

•
-- INTERNAL

i. ~ I/O BUS .. PORT

l]uF ~ -a:
"' EXTERNAL .. I/O BUS ..
::,
al

PORT
~

DCLK the reference clock selected Is output from U 148
U148 generates SHIFT· XADR?" CRTCLK LOADS· and
LOAD* for proper timing tor the four video modes U149 also
generated H I and J which are fed to the Graphics Port J7
tor reference timings of Hires graphics video Refer to Video
T1m1ng Figs 4-2 and 4-3 for tImIng reference

4.2.5 Address Decode

The Address Decode section will be dtv1ded into two subsec
tIons Memory Map decoding and Port Map decoding

4.2.5.1 Memory Map Decoding

Memory Map Decodrng Is accomphshed by Gate Array 4 2
(U106) Four memory map modes are available which are corn
pat1ble with the Model Ill and Model 4 microcomputers U106 Is
used for memory map control which also controls page map
ping of the 32K RAM pages Refer to Memory Maps below

4.2.5.2 Port Map Decoding

Port Map Decoding Is accomphshed by Gate Array 4 2 (U106)
U106 decodes the low order address (AO A7) from the CPU
and decodes the port being selected The IN" signal allows the
CPU to read from a selected port and the OUT" signal allows
the CPU to write to the selected port Refer to 10 Port
Assignment

4.2.6 ROM

The Model 4P contains only a 4K x 8 Boot ROM (U?0) This
ROM Is used only to boot up a Disk Operating System into
the RAM memory If Model Ill operation or DOS Is required
then the RAM from location 0000-37FFH must be loaded
with an image of the Model Ill or 4 ROM code and then exe
cuted A file called MODEL A/Ill IS supplied With the Model
4P which contains the ROM image for proper Model Ill oper
ation On power-up, the Boot ROM ,s selected and mapped
into location 0000-0FFFH After the Boot Sector or the ROM
Image Is loaded, the Boot ROM must be mapped out by
OUTmg to port 9CH with DO set or by selecting Memory
Map modes 2 or 3 In Mode 1 the RAM Is wnte enabled for
the full 14K This allows the RAM area mapped where Boot
ROM Is located to be written to while executing out of the
Boot ROM Refer to Memory Maps

The Model 4P Boot ROM contains all the code necessary to
Initlallze hardware detect opt10ns selected from the keyboard
read a sector from a hard disk or floppy and load a copy of the
Model Ill ROM Image (as mentioned) rnto the lower 14K of
RAM

The firmware Is d1vIded into the following routines

Hardware lnIt1ahzat1on
Keyboard Scanner
Control
Floppy and Harcf01sk Onver
Disk Directory Searcher
File Loader
Error Handler and Displayer
RS 232 Boot
Diagnostic Package

Theory of Operation

This section describes the operation of various routines In the
ROM Normally the ROM Is not addressable by normal use
However there are several routrnes that are available through
fixed calling locations and these may be used by operatmg sys
terns that are bootmg

On a power up or RESET cond1t1on the ZSO s program counter
Is set to address O and the boot ROM Is switched m The mem
ory map of the system Is set to Mode O (See Memory Map for
details) This will cause the ZSO to fetch InstructIons from the
boot ROM

The lrntlallzalion section of the Boot ROM now performs these
functions

Disables maskable and non maskable interrupts
2 lnterrup1 mode 1 Is selected
3 Programs the CRT Controller
4 lrnt1ahzes the boot ROM control areas rn RAM
5 Sets up a stack pointer
6 Issues a Force Interrupt to the Floppy Disk Controller

to abort any current acllvI1y
7 Sets the system clock to 4mhz
8 Sets the screen to 64 x 16
9 Disables reverse video and the alternate character

sets
1 O Tests for key being pressed·
11 Clears all 2K of video memory

• This Is a special test If the Is berng pressed then
control Is transferred to the dIagnost1c package In the
ROM All other keys are scanned via the Keyboard
Scanner

Hardware 105

UIM, 12M

DCLK

DOT*

H

:c I _j I ' I j I j I ' ' r Ill

i
J Ill

(D -0
MA,0 a,

SHIFT*

LOADS* LJ LJ LJ
LOAD* LI LI u

CRTCLK

XADR7*

FlaUN+a.WlloTldllnl 31x1t 48xM

• 0

~· LJ 91

lJM, 12M

DCLK
DOT*

H
LJ I

I_J
• • ' •

i • • • • r
J

MA~
J: SHIFT* .,
a ,.

LOADS*

LJ
.,
al LJ ~

0
-.J LOAD*

CRTCLK

XADR7* _____ _.

Flgu• w. Video Timing 64 x 16... • lt N Mode

The Keyboard scanner is now called. It scans the keyboard !or
a set period of time and returns several parameters based on
which, if any, keys were pressed.

The keyboard scanner checks for several different groups of
keys. These are shown below:

Function Group
<Fl>
<F2>
<F3>
<1>
<2>
<3>

<Lett-Shift>
<Right-Shift>

<Ctrl>
<Caps>

Special Keys
<P>
<L>
<N>

Selection Group
A

B
C
D
E
F
G

Misc Keys
<Enter>
<Break>

When any key in the Function Group is pressed, it is recorded
in RAM and will be used by the Control routine in directing the
action of the boot. If more than one of these keys are pressed
during the keyboard scan, the last one detected will be the one
that is used. The Function group keys are currently defined as:

<Fl> or <1>
<F2> or <2>
<F3> or <3>
<Lett-Shitt>
<Right-Shift>
<Ctrl>
<Caps>

Will cause hard disk boot
Will cause floppy disk boot
Will force Model Ill mode
Reserved tor future use
Boot lrom RS-232 port
Reserved for future use
Reserved for future use

The Special keys are commands to the Control routine which
direct handling of the Model Ill ROM·image. Each key is de·
tected individually.

<P>

<N>

When loading the Model Ill
ROM-image, the user will be
prompted when the disks can
be switched or when ROM
BASIC can be entered by
pressing <Break>.
Instructs the Control routine to
not load the Model Ill ROM
image, even if it appears that
the operating system being
booted requires it.

<L> Instructs the Control routine to
load the Model Ill ROM-image.
even If ,t Is already loaded This
Is useful 11 the ROM-image has
been corrupted or when switch•
ing ROM-images. (Note that
this will not cause the ROM·
image to be loaded 11 the boot
sector check indicates that the
Model Ill ROM image Is not
needed. Press• F3 •or• F3
and · L · to accomphsh that.

The Selection group keys are used m determining which file will
be read from disk when the ROM-image is loaded. For details
of this operation, see the Disk Directory Searcher. If more than
one of the Selecllon group keys are pressed, the last one de
tected wiU be the one that is used.

The Miscellaneous keys are:

<Break>

<Enter>

Pressing this key is simply re
corded by setting location
405BH non-zero. It is up to an
operating system to use this
flag if desired.
Terminates the Keyboard rou
tine. Any other keys pressed up
to that time will be acted upon.
<Enter> is useful for experi•
enced users who do not want to
wait unlll the keyboard timer
expires.

The Control section now takes over and follows the following
flowchart.

Hardware 1 08

0

Beg ,n

• Yes Attempt to <Fl>
Yes Goto I l l Disk Or 1ve read boot a, '1> 1 (Hard Disk Boot) Present ? sector pressed ?

No
No Yes

Yes Goto 121
2 <Floppy Disk Boot l

<Fl> 01splay

O< '1> Yes Hard Disk
pressed ? Error

Message

No

No

< F3>
Yes Goto I 3 I a, <3> 3 C Model ll l Boot I pressed ?

2
Stop

No

~ Yes
4 Goto I 41

...I <HS-232 Boot)

At this point, 00 va 1 id Fu net 10n keys
At.tempt to

have been pressed. read boot No
sector

ARC NET Display ao error
Controller Yes message. (ARC NET

No Board Boot ROM required
Present ? fa, ARCNET Boot) Yes

No

No

1

A B C

I

Hardware 109

B

<F'2>

Model II I

No

D

Yes

Display
Floppy Disk
Error
Message

NO

Stop

Yes

C

Sector
256 bytes,

and no ref .s
Model III

ROM ?

Yes

Set Transfer
Address to
43JjlH
Note: 2

®

No

E

3

Note: 1

Hardware 110

D

Attempt to
locate
ROM Image
on
Floppy Disk
Note: 4

Write-enable
JJ-37FFH
tMode 1)

Load ROM
Image

Note: 5

Set Transfer
Address at end
of ROM Image
(Normally 31H5Hl

Note: 2

G

E

Set
Transfer F
Address to
3l'1SH
Note: 2

No

0
Yes

Display
Errol:'
Message

Stop

-

--

' .,

G

ROM

lmage
Present?

Yes

'p,
pressed

?

Yes

Display
"ROM Image
1S loaded~
message

Wait for
<ENTER> or
<BREAK> to
be pressed

Write-protect
memory (Mode jJ)

Set CPU speed
to 2MH z

No

Hardware 111

Switch boot ROM
out of Memory

Jump to
Transfer Address

7l---~

Initialize
RS-232 Port
Note: 6

Wait foe
Carrier Detect

Determine
Correct
Baud Rate

Transm1 t Baud
Rate Detect
Message

..,al':. for
5 1 nc B;t"'
l ! ~ h

Load program
from RS-232

An
Prror

Transfer
control
to address
received

Notes:

Yes DlSplay and
transn1t error

(1) If the boot sector was not 256 bytes m length then 11 is as
sumed to be a Model Ill package and the ROM image will
be needed If the sector Is 256 bytes ,n length then the
sector Is scanned for the sequence COxxOOH The CD Is
the first byte of a zao uncond1t1onal subroutine call The
next byte can have any vatue The third byte Is tested
agamst a zero What this check does Is test for any refer
ences to the first 256 bytes of memory All Radio Shack
Model Ill operating systems and many other packages alt
reference the ROM at some pomt dunng the boot sector
Most boot sectors will display a message 11 !he system can
not be loaded To save space these routines use the
Model Ill ROM calls to display the message Several ROM
calls have their entry points in the first 256 bytes of mem
ory and these references are detected by the boot ROM

Packages that do not reference the Model Ill ROM 1n the
boot sector can still cause the Model Ill ROM image to be
loaded by coding a CDxxOO somewhere In the boot sector
It does not have to be executable At the same tame Model
4 packages must take care that there Is no sequence of
bytes in the boot sector that could be m1s-1nterpreted to be
a reference to the Boot ROM An example of this would be
sequence 06CDOEOO which Is a LO 8 OCOH and a LO
C O If the boot sector cannot be changed then the user
must press the F3 key each time the system Is started
to inform the ROM that the disk contains a Model Ill pack
age which needs the Model Ill ROM image

(2) If you are loading a Model 4 operating system then the
boot ROM will always transfer control to the first byte of the
boot sector, which Is at 4300H If you are loadmg a Model
Ill operating system or about to use Model Ill ROM BASIC
then the transfer address Is 3015H This Is the address of
a Jump vector In the C ROM of the Model Ill ROM image
and this will cause the system to behave exactly like a
Model Ill JI the ROM image Ille that Is loaded has a differ
ent transfer address then that address will be used when
loadmg Is complete If the image Is already present, the
Boot ROM will use 3015H

(3) Two d1fferent tests are done to insure that the Model Ill
ROM image Is present The first test Is to check every third
location starting at 3000H for a C3H This Is done for 10 lo•
cations If any of these locations does not contain a C3H
then the ROM image Is considered to be not present
The next lest 1s to check two bytes at location OOOBH If

these addresses contam E9E 1 H then the ROM image Is
considered to be present

(4) See Disk Director Searcher for more mformat1on

(5) See File Loader for more mformat1on

(6) The RS-232 loader 1s descnbed under RS-232 Boot

Otsk Directory Searcher

When the Model 111 ROM image Is to be loaded 111s always read
from the floppy m dnve O

Before the operation begins. some checks are made First the
boot sector Is read m from the floppy and the hrst byte Is
checked to make sure It Is either a OOH or a FEH If the byte
contains some other value no attempt will be made to read the
ROM image from that disk The locatron of the directory cyhnder
is then taken from the boot sector and the type of disk 1s deter
mined This Is done by examining the Data Address Mark that

Hardware 112

-

0

-

•

•

was picked up by the Floppy Disk Controller (FDC) during the
read of the sector If the DAM equals 1 the disk Is a TRSDOS
1 x style disk II the DAM equals 0 then the disk IS a LOOS 5 1
TRSOOS 6 style disk This Is important since TASOOS 1 x
disks number sectors starting with 1 and LOOS style disks
number sectors starting with 0

Once the disk type has been determined an extra test Is made
1f the disk Is a LOOS style disk This test reads the Granule Al
location Table (GAT) to determine 1f the disk Is single sided or
double sided

The directory Is then read one record at a time and a compare
Is made against the pattern MODEL 0 o for the filename and
tll for the extension The 0 o means that any character will

match this posIt1on If the user pressed one of the selection
keys (AG) dunng the keyboard scan then that character Is
substituted m place of the % character For example 1f you
pressed O then the search would be for the file MODELO
with the extension Ill The searching algonthm searches until
it fmds the entry or 11 reaches the end of the drrectory

Once the entry has been found the extent 1nformat1on for that
file Is copied into a control block for later use

FIie Loader

The hie loader Is actually two modules - the actual loader and
a set of routmes to fetch bytes from the file on disk The loader
Is invoked via a AST 28H The byte fetcher Is called by the
loader using AST 20H Smee restart vectors can be re directed
the same loader Is used by the RS 232 boot The difference Is
that the AST 20H Is red1rected to point to the RS 232 data re
ceIvmg routine The loader reads standard loader records and
acts upon two types

01 Data Load
1 byte with length of block 1nclud1ng address
1 word with address to load the data
n bytes of data where n + 2 equals the length specified

02 Transfer Address
1 byte with the value of 02
1 word with the address to start execution at

Any other loader code Is treated as a comment block and Is 19
nored Once an 02 record has been found the loader stops
reading even 1f there Is add1t1onal data so be sure to place the
02 record at the end of the file

Floppy and Hard Disk Driver

The disk dnvers are entered via AST BH and wI11 read a sector
anywhere on a floppy disk and anywhere on head 1 (top head)
In a hard disk dnve Either 256 or 512 byte sectors are readable
by these routines and they make the determmat1on of the sector
size The hard disk dnver 1s compatible with both the W01000
and the W01010 controllers The floppy disk dnver Is wntten for
the WO 1 793 controller

Serial loader

Invoking the senal loader Is s1mIlar to forcing a boot from hard
disk or floppy In this case the right shift key must be pressed at
some time durmg the first three seconds after reset The pro
gram does not care 1f the key ts pressed forever makmg ti con
vernent to connect pms 8 and 10 of the keyboard connector with
a shorting plug for bench testing of boards This assumes that
the obJect program being loaded does not care about the key
closure

Upon entry the program first asserts OTA (J4 pm 20) and ATS
(J4 pin 4) true Next Not Ready Is printed on the topmost lme
of the video display Modem status hne CD (J4 pin 8) Is then
sampled The program loops until It finds CD asserted true At
that time the message Ready Is displayed Then the program
sets about determining the baud rate from the host computer

To determme the baud rate the program compares data re
ceIved by the UART to a test byte equal to 55 hex The receiver
Is first set to 19200 baud If ten bytes are received which are not
equal to the test byte the baud rate Is reduced This sequence
Is repeated until a valid test byte ts received If ten failures occur
at 50 baud the entire process begins agam at 19200 baud If a
vahd test byte Is received the program waits for ten more to ar
nve before concludmg that 11 has determined the correct baud
rate If at this time an improper byte ,s received or a receiver er
ror (overrun frammg or panty) Is intercepted the task begms
agam at 19200 baud

In order to get lo this point the host or the modem must assert
CD true The host must transmit a sequence of test bytes equal
to 55 hex with 8 data bits odd parrty and 1 or 2 stop bits The
test bytes should be separated by approximately O 1 second to
av01d overrun errors

When the program has determrned the baud rate the message

Found Baud Rate x

Is displayed on the screen where x Is a letter from A to P
meaning

A= 50baud E - 150 I = 1800 M - 4800
B = 75 F = 300 J = 2000 N = 7200
C - 110 G - 600 K = 2400 0 - 9600
D = 134 5 H = 1200 L = 3600 P = 19200

Hardware 113

The same message less the character s1grnfymg the baud rate
1s transmitted to the host with the same baud rate and protocol
This message 1s the signal to the host to stop transm1tt1ng test

bytes

After the program has transmrtted the baud rate message 11

reads from the UART data register m order to clear any overrun
error that may have occurred due lo the test bytes coming in
during the transm1ss1on of the message This 1s because the re
cerver must be made ready to receive a sync byte signalling the
begmrnng of the command file For this reason 1t ,s important
that the host wait until the entire baud rate message (16 char
acters) 1s received before transmitting the sync byte which 1s
equal to FF hex

When the loader receives the sync byte the message

Loading

1s displayed on the screen Again the same message 1s trans
m1tted to the host and again the host must wait for the enttre
transm1ss1on before starting mto the command Ille

If the receiver should intercept a receive error while wa,tmg for
the sync byte the entire operation up to this point 1s aborted
The video display 1s cleared and the message

Error x

1s displayed near the bottom of the screen where x ,s a letter
from B to H meaning

B = partty error
C = framing error
D = panty & framing errors
E = overrun error
F = panty & overrun errors
G = framing & overrun errors
H = panty & frammg & overrun errors

The message

Error

1s then transmitted to the host The entire process 1s then re
peated from the Not Ready message A six second delay 1s
inserted before re1rnt1al1zat1on This 1s longer than the time re
quired to transmit five bytes at 50 baud so there ts no need to
be extra careful here

If the sync byte 1s received without error then the Loading
message 1s transmitted and the program 1s ready to receive the
command Ille After rece1v1ng the Loading message the host
can transmit the file without nulls or delays between bytes

(Smee the Ide represents 280 machine code and all 256
combmallons are meaningful 1t would be disastrous to
transmit nulls or other ASCII control codes as ftllers ac
knowledgement or start stop bytes The only control
codes needed are the standard command file control
bytes)

Data can be transmitted to the loader at 19200 baud with no de·
lays inserted Two stop bits are recommended at high baud
rates

See the File Loader descnpt1on for more information on file
loading

If a receive error should occur during Ille loading the abort pro·
cedure descnbed above will take place so when attempting re
mote control 1t 1s wise to monitor the host receiver dunng
transm1ss1on of the hie When the host 1s near the obJect board,
as 1s the case m the factory appl1cat1on or when more than one
board 1s being loaded 11 may be advantageous or even nec
essary to ignore the transmitted responses of the ob1ect
board(s) and to manually pace the test byte sync byte and
command file phases of the transm1ss1on process usmg the
video display for handshaking

System Programmers Information

The Model 4P Boot ROM uses two areas of RAM while ti 1s run
ning These are 4000H to 40FFH and 4300H to 43FFH (For
512 byte boot sectors the second area 1s 4300H to 44FFH) If
the Model Ill ROM Image 1s loaded add1t1onal areas are used
See the technical reference manual for the system you are us
mg for a hst of these areas

Operating systems that want to support a software restart by re
executing the contents of the boot ROM can accomphsh this 1n
one of two ways If the operatmg system rehes on the Model 111
ROM Image then Jump to location O as you have in the past If

the operating system 1s a Model 4 mode package a simple way
1s to code the fotlowmg instructions m your assembly and load
them before you want to reset

Absolute Location
0000
0001
0003

Instruction
DI
LO

OUT
A 1

(9CH)A

These mstruct1ons cause the boot ROM to become address
able After executing the OUT 1nstruct1on the next mstruct1on
executed will be one 1n the boot ROM (These instructions also
exist m the Model Ill ROM image at location O) The boot ROM
has been written so that the ftrst mstructmn 1s at address 0005
The hardware must be m memory mode O or 1, or else the
boot ROM will not be switched 1n This operation can be
done with an OUT mstruct1on and then a AST O can be exe•
cuted to have the ROM switched m

Hardware 114

0

•

\
JI

.,

Restarts can be redirected at any time while the ROM Is
swtlched m All restarts Jump to fixed locations m RAM and
these areas may be changed to pomt to the routme that 1s to be

executed

Restart RAM Location Default Use
0 none Cold Start Boot

8 4000H Disk I O Request
10 4003H Display string
18 4006H Display block
20 4009H Byte Fetch (Called by Loader)
28 400CH File Loader

30 400FH Keyboard scanner
38 4012H Reserved for future use

66 4015H NMI (Floppy 1,0 Command
Complete)

The above routines have fixed entry parameters These are de•
scnbed here

Disk 1/0 Request (RST SH)

Accepts
A
B

C

DE

Hl

Returns
z

NZ

Error Codes

3
4
5
6
7

6
9

11
12

1 for floppy, 2 for hard disk
Command
lrntIahze
Restore
Seek

1

4

6
Read 12 (All reads have an im-

plied seek)
Sector number to read
The contents of the location d1sktype
(40SCH) are added to this value before
an actual read If the disk Is a two sided
floppy, Just add 18 to the sector number
Cyhnder number (Only E Is used m
floppy operations)
Address where data from a read opera
tion Is to be stored

Success, Operation Completed
Error, Error code In A

Hard Disk dnve Is not ready
Floppy disk dnve 1s not ready
Hard Disk dnve Is not available
Floppy disk dnve Is not available
Dnve Not Ready and no Index (Disk in
dnve, door open)
CRC Error
Seek Error
Lost Data
ID Not Found

Display String (RST 1 OH)

Accepts

HL

DE

Returns
Success Always

A
DE
HL

Pomter to text to be displayed
Text must be terminated with a null (0)
Offset posItIon on screen where text Is to
be displayed
(A 0000H will be the upper left-hand cor
ner of the display)

Altered
Pomts to next posItIon on video
Points to the null (0)

Display Block (RST 18H)

Accepts
HL

or

Points to control vector In the format
+ O Screen Offset
+2
null
+4
null

+n

+n

Pointer to text, termmated with

Pointer to text, terminated with

word FFFFH End of control
vector

word FFFEH Next word Is
new Screen
Offset

If Z flag Is set on entry then the f1rst screen offset Is read from
DE instead of from the control vector

Each string Is posrtIoned after the previous strmg, unless a
FFFEH entry IS found This IS used heavily In the ROM to re•
duce duphcat1on of words m error messages

Returns
Success Always

DE Points to next posIt1on on video

Byte Fetch (RST 20H)

Accepts None
Returns

Errors

z
NZ

2

10

Success, byte In A
Failure, error code ,n A

Any errors from the disk 110 call and
ROM Image can't be loaded - Too many
extents
ROM Image can't be loaded - Disk drive
,snot ready

Hardware 115

File Loader (AST 28H)

Accepts None

Returns

z
NZ

Errors

0

Success
Failure, error code m A

Any errors from the disk 1/0 call or the
byte fetch call and:
The ROM image was not found on drive 0

There are several pieces of information left in memory by the

boot ROM which are useful to system programmers. These are
shown below:

RAM Location
401DH

4055H

4056H
4057H

4059H

405BH

405CH

Description
ROM Image Selected (% for none
selected or A-G)
Boot type

1 - Floppy
2 = Hard disk

3 - ARCNET
4 - RS-232C
5 • 7 = Reserved
Boot Sector Size (1 for 256, 2 for 512)
RS-232 Baud Rate (only valid on RS-
232 boot)
Function Key Selected
0 = No function key selected
<F1>or<1> 86
<F2> or <2> 87
<F3> or <3>
<Caps>
<Ctrl>
<Left-Shift>
<Right-Shift>
Reserved

88

85
84
82

83
80-81 and 89-90

Break Key Indication (non-zero if
<Break> pressed)
Disk type (0 for LDOSI

TRSDOS 6, 1 for
TRSDOS 1.x)

Keep in mind that Model Ill ROM image will initialize these
areas, so this information is useful only to the Model 4 mode
programmer.

4.2.7 RAM

Two configurations of Random Access Memory (RAM) are
available on the Model 4P: 64K and 128K. The 64K and 128K
option use the 6665-type 64K x 1 200NS Dynamic RAM, which
requires only a single + 5v supply voltage.

The ORAMs require multiplexed incoming address lines. This

is accomphshed by ICs U110 and U111 which are 74LS157
multiplexers. Data to and from the DRAMs are buffered by a
74LS245 (Ul 18) which is controlled by Gate Array 4.2 (U106).

The proper timing signals RAso·. RAS1 •. Mux·. and CAs· are

generated by a delay line circuit U94. U116 (1 2 of a 74S112)
and U117 (1 4 of a 74F08) are used to generate a precharge
circuit. During M1 cycles of the ZS0A in 4 MHz mode. the high

time in MREQ has a minimum time of 11 0 nanosecs. The spec
ification of 6665 DRAM requires a minimum of 120 nanosecs so

this circuit will shorten the MREQ signal during the M1 cycle.
The resulting signal PMREO is used to start a RAM memory

cycle through U 114 (a 7 4S64). Each different cycle is controlled
at U114 to maintain a fast M1 cycle so no wait states are re
quired. The output of Ul 14 (PRAS") 1s ANDed with RFSH to not

allow Mux· and CAs· to be generated during a REFRESH
cycle. PRAS· also generates either RAso· or RAS 1 ·, depend
ing on which bank of RAM the CPU is selecting. GCAS· gen

erated by the delay line U94 is latched by U116 (1 2 of a
7 4S 112) and held to the end of the memory cycle. The output
of U116 is ANOed with VIDEO signal to disable the CAS· signal
from occurring if the cycle is a video memory access. Refer to
M1 Cycle Timing (Figure 4-7 and 4-8), Memory Read and
Memory Write Cycle Timing (Figure 4-9) and (Figure 4-1 O).

Hardware 116

0

-•

::c
"' a.
~

"' ~ (D ---.J

- \J

ID>B I

BOOT ROM 4K

RAM 1,0K

I READ ONLY l(DESPAGE, ENPAGE,
• • SRCPAGE)
........ K""'E""'y"""a"""D-lK~-t

I
I

VIDEO lK - (1,1,.0)

RAM 16K (1,1,1)

--.. -. A

I /C.0,1,.0> \

RAM 32K I~

SEL,0 =
SELl =
ROM=

(,0,1,1)

STATE

.0
.0
1

32K RAM

r-----,

I

I

LEVEL

.0V

.0V

.0V

32K RAM

I

I

Figure 4-4. Memory

RAM 14K
READ ONLY

MODI I

-

(DESPAGE, ENPAGE,
I I SRCPAGE)

KEYBD lK
VIDEO lK (1,1,.0)

RAM 16K

.-----, /\

I I /(,0,1,,0)

I RAM 32K I . -

SEL,0 =
SELl =
ROM=

(,0,1,1)

STA'l'I

.0

.0
.0

32K RAM

~----

' I

LEVEL

,0V
.0V
5V

32K RAM

J: .,
a
~
cil --a,

BOOT ROM 4K

RAM 14K

MODE l

IWRITE ONLY4K,(DESPAGE, BHPAGE,
• ·• SRCPAGE)
~~K~E'!':'YB~D~l~K:---1

VIDEO lK (1,1,f)

RAM 16K (1,1,l)

<,0,1,IJ>

RAM 32K (,0,1,l)

STATE LEVEL

SEL,0 = 1 sv
SELl = ,0 ,0v
ROM= ,0 sv

I►

32K RAM

32K RAM

1'11uaM.MlltoSJ

0

RAM 14K

KEYBD lK
VIDEO lK

RAM 16K

MODE l

1,
1:

DESPAGE, ENPAGE,
SRCPAGE)

• (1,1,,0) 32K RAM

__, ____ ~----

RAM 32K • (,0,1,l) \
32K RAM

STATE LEVEL

SEL,0 = 1 sv
SELl = ,0 ,0v
ROM= l ,0v

~

I
::c
"' a. ,.
"' al
~

~

<D I

w

RAM 32K

l«>DB 2

(DESPAGE, ENPAGB,
SRCPAGE)

c1,1,s1

l)

32K RAM

------ y ;----,

~ 29K

KEYBD lK
VIDEO 2K

I

I " •

SEL.0 =
SELl =
·ROM=

/ '\

(,0,1,1)

STATE

.0
1
X

. I 32K RAM

LEVEL

.llv
sv

I

Figure 4-6. Memory

RAM 32K

MODE 3

(DESPAGE, ENPAGE,
SRCPAGE)

(1,1,.0)

_,

32K RAM

r---, I\ r-------

I RAM 321t I~•

SELjJ =
SELl =
ROM=

(,0,1,1)

STATE

1
1
X

I

LEVEL

sv
sv

321t RAM

::i: .,
a.
~ .,
m -I\)
0

I Tl

(2MHz) PCLK _j \ -A.0-AlS

Ml

MREQ

RD

RFSH

PMREQ

RAMRDEN
PRAS*

RASEN,0* or
RASENl*

RAS,0* or
RASl*

MUX*

CAS*

DRA,0-DRA 7 XlCOO/XlOI ROW ADD. f

W1wtonn
Symbol

lrlpul

1.1 .. ,1 81'

V,l"l

~ (.l'Jr\Qf'

~ J'•"m H IO l

/TIil/ ~.;;a:~: H

I T2

I \

~

W,H Be
'Ja~CI

W,11 CNinQe
l',omt-t •o L

w,11 Change
Froml!OIS

Weve!o,m
11'1pul

'""'""
Oo" t Care ~xxxxzox ~"~ (haf'fl
P••m,uld

~ _ ____r-

I T3

I '

COL. ADD. ~

Ovtoul

Chang,ng
Staie

,Jr><r>own

.,,gh
'""Pe<lar,ce

M0,0-MD7 VALID DATA

t Figure 4-7. r~ycle Timing (2MHZ)

I T4

I \ I

REFRESH ADD. x::

-· LYJ _,

Tl I T2 I T3 I T4

(4MHz) PCLK _j ' I ' ' ' ' ' I
A0'-Al5

Ml

MREQ

RD

I
RFSH .,

a.
:; PMREQ Q)

ii!
~

N RAMRDEN
~

PRAS*

RASEN0'* or
RASENl*

RAS0'* or
RASl*

MUX*

CAS*

DRA0'-DRA7 xxzxxxxxxxxx ROW ADD. x COL. ADD. X REFRESH ADD. t
MD0'-MD7 VALID DATA I

Figure 4-8. M1 Cycle Timing (4MHZ)

Tl I T2 I T3

PCLK _J \ I \ I ' I L
Ai/-Al5

MREQ

RD

PMREQ

RAMRDEN
:r PRAS*
"' a :;;

RASEN,0* or "' iil RASENl* ~

"' RAS,0* or "' RASl*
MUX*

CAS*

DRA,0-DRA7 xxxm ROW ADD. X COL. ADD. ~'I.W:IJ.
MD,0-MD7 (VALID DATA)

lll•N 4,,e. Memory Read Cycle Timing

1· 0 I

"' L) -

Tl I T2 I T3

_j \ I \ I \ I PCLK L
A~-Al5

MREQ

WR

PMREQ
:J: .,
a. RAMWREN :; .,
iil
~ PRAS*
"' "' RASEN~• or

RASENl*
RAS~• or
RASl*

MUX*

CAS*

DRA~-DRA7 NMfi'NI ROW ADD. X COL. ADD. ixxxxzxx
MD~-MD7 m WRITE DATA)

Flgu,. 4,,1&, ■lllllfY ... c,111 Tiet*•

Memory Map - Model 4P

ModeO SEL0 - 0 - av Mode 1 SEL0 - 1 -sv
SELl 0 0V SELl - 0 av
ROM - 1 - av ROM - 0 -sv

0000-0FFF Boot ROM 4K 0000-37FF RAM 14K
1000-37FF RAM (Read Only) 10K 3800-3BFF Keyboard 1K
37E8-37E9 Printer Status (Read Only) 2 3C00-3FFF Video 1K
3800-3BFF Keyboard 1K 4000- FFFF RAM 48K
3C00-3FFF Video 1K
4000-FFFF RAM 48K

Mode2 SEL0 - 0 - 0V

SELl = 1 = + 5V
Mode0 SEL0 - 0 = 0V ROM - X - Don t Care

SELl - 0 - av
ROM - 0 - +5V 0000-F3FF RAM 61K

F400- F?FF Keyboard 1K
0000-37FF RAM (Read Only) 14K FS00-FFFF Video 2K
37E8-37E9 Printer Status (Read Only) 2
3800-3BFF Keyboard 1K
3C00-3FFF Video 1K Mode3 SEL0 - 1 - +SV
4000-FFFF RAM 48K SELl = 1 = +SV

ROM = X = DontCare

Mode 1 SELO = 1 = +5V 0000-FFFF RAM 64K
SELl = 0 = 0V
ROM = 1 = 0V

0000-0FFF Boot ROM 4K
0000-0FFF RAM (Wrote Only) 4K
1000-37FF RAM 10K
3800-3BFF Keyboard 1K
3C00-3FFF Video 1K 0 4000-FFFF RAM 48K

-•
Hardware 124

liO Port Assignment

Normally
Port# Used Out In

FC-FF FF CASSOUT. MODIN.

F8-FB F8 LPOUT. LPIN.

F4-F7 F4 DRVSEL• (RESERVED)
F0-F3 DISKOUT • DISKIN. - F0 F0 FDC COMMAND REG. FDC STATUS REG

"
Ft Ft FDC TRACK REG. FDC TRACK REG.
F2 F2 FDC SECTOR REG. FDC SECTOR REG
F3 F3 FDC DATA REG. FDC DATA REG.
EC-EF EC MODOUT· RTCIN.

EB-EB RS232OUT • RS2321N •
EB EB UART MASTER RESET MODEM STATUS
E9 E9 BAUD RATE GEN. REG. (RESERVED)
EA EA UART CONTROL AND 1JART STATUS REG.

MODEM CONTROL REG.
EB EB UART TRANSMIT UART HOLDING REG.

HOLDING REG (RESET D.R.)
E4-E7 E4 WR NMI MASK REG. kD NMI STATUS·
E0-E3 ED WR INT MASK REG. RD INT MASK REG.
AO-OF (RESERVED) (RESERVED)
9C-9F 9C BOOT· (RESERVED)
94-98 (RESERVED) (RESERVED)
90-93 90 SEW (RESERVED)
8C-8F GSEL0. GSEL0 •
88-BB CRTCCS • (RESERVED)
88, BA 88 CRCT ADD REG. (RESERVED)
89,88 89 CRCT DATA REG. (RESERVED)
84-87 84 OPREG. (RESERVED)
80-83 GSELi • GSELi •

~
_,J

' .,

Hardware 125

1/0 Port Description

Name: CASSOuT·
Port Address: FC - FF
Access: WRITE ONLY
Description: Output data to cassette or for sound

generation

Note: The Model 4P does not support cassette storage
this port Is only used to generate sound that was to
be output via cassette port The Model 4P sends
data to onboard sound c1rcurt

00

01

= Cassette output level (sound data output)

= Reserved

D2 - D7 = Undefined

Name: MODIN. (CASSIN ')
Port Address: FC - FF
Access: READ ONLY
Description: Configuration Status

00 = 0

D1 - CASSMOTORON STATUS

02 = MODSEL STATUS

D3 = ENALTSET STATUS

04 = ENEXTIO STATUS

05 = (NOT USED)

08 = FAST STATUS

D7 = 0

Name: LPOUT •
Port Address: F8 - FB
Access: WRITE ONLY
Description: Output data to hne printer

DO - D7 = ASCII BYTE TO BE PRINTED

Name: LPIN •
Port Address: F8 - FB
Access: READ ONLY
Description: Input lrne printer status

DO - D3 - (RESERVED)

D4 = FAULT

D5

08

D7

Name:

1 - TRUE
0 - FALSE

= UNIT SELECT
1 = TRUE
0 = FALSE

= OUTPAPER
1 = TRUE
0 = FALSE

= BUSY
1 = TRUE
0 = FALSE

DRVSEL'
Port Address: F4 - F7
Access: WRITE ONLY
Description: Output FOG Configuration

Note: Output to this port will ALWAYS cause a 1 ·2 mscc
(Microsecond) watt to the Z80

DO = DRIVE SELECT 0

D1

D2

= DRIVE SELECT 1

= (RESERVED)

D3 = (RESERVED)

04 = SDSEL

D5

0 = SIDEO
1 = SIDE 1

= PRECOMPEN
0 = No wnte precompensatIon
1 = Wnte Precompensat1on enabled

06 = WSGEN
0 = No wait state generated
1 = wa,t state generated

Note: This wait state Is to sync zao with FDC chip during
FDC operation

07 =ODEN·
0 = Single Density enabled (FM)
1 = Double Density enabled (MFM)

Hardware 126

-

0

-

i

\

Name: DISKOUT •
Port Address: F0- F3
Access: WRITE ONLY
Description: Output to FDC Control Registers

Port F0 = FOC Command Register

Port Ft - FOC Track Register

Port F2 = FDC Sector Register

Port F3 = FDC Data Register

(Refer to FDC Manual for 81t Assignments)

Name: DISKIN •
Port Address: F0 - F3
Access: READ ONLY
Description: Input FDC Control Registers

Port F0 = FDC Status Register

Port F1 = FDC Track Register

Port F2 = FDC Sector Register

Port F3 = FOG Data Register

(Refer to FDC Manual for Bit Assignment)

Name: MODOUT•
Port Address: EC - EF
Access: WRITE ONLY
Description: Output to Conf1gurat1on Latch

DO = (RESERVED)

01

D2

D3

= CASSMOTORON (Sound enable)
0 = Cassette Motor Off (Sound enabled)
1 = Cassette Motor On (Sound disabled)

= MODSEL
0 = 64 or 80 character mode
1 = 32 or 40 character mode

= ENALTSET
0 = Alternate character set disabled
1 = Alternate character set enabled

04 - ENEXTIO
0 - External 10 Bus disabled
1 - External 10 Bus enabled

D5 - (RESERVED)

D6

D7

- FAST
0 - 2 MHZ Mode
1 - 4 MHZ Mode

= (RESERVED)

Name: RTCIN •
Port Address: EC - EF
Access: READ ONLY
Description: Clear Real Time Clock Interrupt

D0-D7 - DONTCARE

Name: RS232OUT •
Port Address: ES - EB
Access: WRITE ONLY
Description: UART Control, Data Control, Modem Control

BAG Control

Port ES = UART Master Reset

Port E9 = BAUD Rate Gen Register

Port EA = UART Control Register (Modem Control Reg)

Port EB = UART Transmit Holding Reg

(Refer to Model Ill or 4 Manual for 811 Assignments)

Name: RS2321N •
Port Address: ES - EB
Access: READ ONLY
Description: Input UART and Modem Status

Port ES = MODEM STATUS

Port E9 = (RESERVED)

Port EA = UART Status Register

Port EB = UART Receive Holding Register (Resets DR)

(Refer to Model Ill or 4 Manual for Bit Assignments)

Hardware 127

Name: WRNMIMASKREG .

Port Address: E4 - E7
Access: WRITE ONLY
Description: Output NMl Latch

DO-D5

D6

07

(RESERVED)

- ENMOTOROFFINT
0 Disables Motoroff NMI
1 - Enables Motorotf NMI

- ENINTRO
0 - Disables INTRO NMI
1 - Enables INTRO NMI

Name: RDNMISTATUS.

Port Address: E4 - E?
Access: READ ONLY
Description: Input NMI Status

DO ~ 0

D2 - D4 - (RESERVED)

05 ~ RESET (not needed)
O - Reset Asserted (Problem)
1 - Reset Negated

06 ~ MOTOROFF

07

O - Motoroff Asserted
1 - Motoroff Negated

= INTRO
0 ~ INTRO Asserted
1 = INTRO Negated

Name: WRINTMASKREG •
Port Address: EO- E3
Access: WRITE ONLY
Description: Output INT Latch

DO - Dl = (RESERVED)

02 = ENRTC
O -==- Real time clock interrupt disabled
1 - Real time clock interrupt enabled

03 = ENIOBUSINT

04

0 -==- External 10 Bus interrupt disabled
1 -==- External 10 Bus interrupt enabled

= ENXMITINT
0 = RS232 Xm1t Holding Reg empty
disabled
1 = RS232 Xm1t Holdmg Reg empty
enabled

int

int

D5 = ENRECINT
0 RS232 Rec Data Reg lull rnt disabled
1 - RS232 Rec Data Reg full int enabled

D6 - ENERRORINT

D?

0 - RS232 UART Error interrupts disabled
1 - RS232 UART Error interrupts enabled

- (RESERVED)

Name: RDINTSTATUS •
Port Address: EO - E3
Access: READ ONLY
Description: 1nput INT Status

DO - Dl - (RESERVED)

D2 - ATC INT

D3 = IOBUS INT

D4 = RS232 XMIT INT

D5 = RS232 REC INT

D6 = RS232 UART ERROR INT

07 = (RESERVED)

Name: BOOT"
Port Address: 9C - 9F
Access: WRITE ONLY
Description: Enable or Disable Boot ROM

DO = ROM"
0 - Boot ROM Disabled
1 = Boot ROM Enabled

D1 - D? = (RESERVED)

Name: SEN"
Port Address: 90 - 93
Access: WRITE ONLY
Description: Sound output

DO = SOUND DATA

Dl - D? = (RESERVED)

Hardware 128

0

•

Name: OPREG •
Port Address: 84
Access: WRITE ONLY
Description: Output to operation reg.

DO = SEL0

D1 = SEL1 --
"

SEL1 SEL0 MODE
0 0 0
0 1 1
1 0 2
1 1 3

D2 = 8064
O = 64 character mode
1 = 80 character mode

03 = INVERSE
0 = Inverse video disabled
1 = Inverse video enabled

= SRCPAGE - Po,nts to the page to be mapped
as new page

0 - U64K, L32K Page
1 = U64K, U32K Page

05 = ENPAGE - Enables mapping of new page
0 = Page mapping disabled
1 = Page mapping enabled

)
D6 DESPAGE - Points to the page where new

page Is to be mapped:
0 = L64K, U32K Page
1 = L64K, L32K Page

D7 = PAGE
O = Page o of Video Memory
1 = Page 1 of Video Memory

.,

Hardware 129

4.2.8 Video Circuit

The heart of the video display circuit m the Model 4P 1s the
68045 Cathode Ray Tube Controller (CRTC) U42 The CRTC
Is a preprogrammed video controller that provides two screen
formats 64 by 16 and 80 by 24 The format 1s controlled by pin
3 of the CRTC (8064') The CRTC generates all of the neces
sary s1gnals required for the video display These signals are
VSYNC (Vertical Sync), HSYNC (Horizontal Sync) for proper
sync of the morntor DISPEN (Display Enable) which indicates
when video data should be output to the monitor, the refresh
memory addresses (MAO·MA13) which addresses the video
RAM, and the row addresses (RA0-RA4) which 1nd1cates which
scan lme row 1s being displayed The CRTC also provides hard
ware scrolling by wntmg to the internal Memory Start Address
Register by OUT mg to Port 88H The mternal cursor control of
the 68045 Is not used m the Model 4P video circuit

Smee the 80 by 24 screen requires 1,920 screen memory lo•
cations, a 2K by 8 static RAM (U82) is used for the video RAM
Addressmg to the video RAM (U82) Is provided by the 68045
when refreshing the screen and by the CPU when updating of
the data Is performed These two sets of address hnes are mul
tiplexed by three 74LS157s (U41, U61, and U81) The multi
plexers are switched by CRTCLK which allows the CRTC to
address the video RAM dunng the high state of CRTCLK and
the CPU access dunng the low state A 1 0 from the CPU Is con
trolled by PAGE" which allows two display pages In the 64 by
16 format When updates to the video RAM are performed by
the CPU, the CPU IS held In a WAIT state until the CRTC IS not
addressing the video RAM This operation allows reads and
wntes to video RAM without causmg hashing on the screen
The cIrcu1t that performs this function ,s a 74LS244 buffer
(U84), an 8 bit transparent latch, 74LS373 (U83) and a Delay
hne cIrcuIt shared with Dynamic RAM timing circuit consisting
of a 74LS74 (U98), 74LS32 (U96), 74LS04 (U95), 74LSOO
(U92), 74LS02 (U69), and Delay Line (U94) During a CPU
Read Access to the Video RAM, the address Is decoded by the
GA 4 2 and asserts VIDEO" low This ,s inverted by U95 (1 6 of
74LS04) which pulls one input of U92 (1 4 of 74LSOO) and in
turn asserts VWAIT * low to the CPU RD IS high at this lime and
Is latched into U98 (1 2 of 74LS74) on the nsIng edge of
XADR?', inverse of CRTCLK

When RD Is latched by U98 the Q output goes low releasing
WAIT* from the CPU The same signal also Is sent to the Delay
Line (U94) through Ul 17 (1 4 of 74F08) The Delay line delays
the fathng edge 240 ns for VLATCH* which latches the read
data from the video RAM at U83 The data Is latched so the
CRTC can refresh the next address location and prevent any
hashing MAO· decoded by U106 and a memory read Is ORed
with VIDEO" which enables the data from U83 to the data bus
The CPU then reads the data and completes the cycle A CPU
wnte Is slightly more complex m operation As m the RD cycle,
VIDEO* Is asserted low which asserts VWAIT* low to the CPU
WA Is h1gh at this ttme which Is NANDed with VIDEO and
synced with CRTCLK to create VRAMDIS that disables the
video RAM output On the nsIng edge of XAOR?", WR Is
latched into U98 (1 2 of 74LS74) which releases VWAtr and
starts cycle through the Delay Line After 30ns DLYVWR" (De
layed video wnte) Is asserted low which also asserts VBUFEN*
(Video Buffer Enable) low VBUFEN* enabled data from the
Data bus to the video RAM Approximately 120ns later
OLYVWR" ts negated high which wntes the data to the video
RAM and negates VBUFEN" turning off buffer The CPU then
completes WA cycle to the video RAM Refer to Video RAM
CPU Access T1mmg Figure 5-12 for tImIng of above RD or WR
cycles

Ounng screen refresh, CRTCLK Is high allowmg the CRTC
to address Video RAM The data out of the video RAM Is
latched by LOAD" into Gate Array 4 3 (U102) INVERSE"
determines If character should be alpha-numenc only {IN•
VERSE" high) or unchanged (INVERSE" low) A9 Is de·
coded with ENALTSET (Enable Alternate Set) and 7, which
controls the alternate set In the character generator ROM
See ENALTSET Control Table below

ENALTSET 07 06 A9
0 0 0 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 0

Hardware 130

0

4.2.8 Video Circuit

The heart of the video display circuit m the Model 4P 1s the
68045 Cathode Ray Tube Controller (CRTC) U42 The CRTC
Is a preprogrammed video controller that provides two screen
formats 64 by 16 and 80 by 24 The format 1s controlled by pin
3 of the CRTC (8064') The CRTC generates all of the neces
sary s1gnals required for the video display These signals are
VSYNC (Vertical Sync), HSYNC (Horizontal Sync) for proper
sync of the morntor DISPEN (Display Enable) which indicates
when video data should be output to the monitor, the refresh
memory addresses (MAO·MA13) which addresses the video
RAM, and the row addresses (RA0-RA4) which 1nd1cates which
scan lme row 1s being displayed The CRTC also provides hard
ware scrolling by wntmg to the internal Memory Start Address
Register by OUT mg to Port 88H The mternal cursor control of
the 68045 Is not used m the Model 4P video circuit

Smee the 80 by 24 screen requires 1,920 screen memory lo•
cations, a 2K by 8 static RAM (U82) is used for the video RAM
Addressmg to the video RAM (U82) Is provided by the 68045
when refreshing the screen and by the CPU when updating of
the data Is performed These two sets of address hnes are mul
tiplexed by three 74LS157s (U41, U61, and U81) The multi
plexers are switched by CRTCLK which allows the CRTC to
address the video RAM dunng the high state of CRTCLK and
the CPU access dunng the low state A 1 0 from the CPU Is con
trolled by PAGE" which allows two display pages In the 64 by
16 format When updates to the video RAM are performed by
the CPU, the CPU IS held In a WAIT state until the CRTC IS not
addressing the video RAM This operation allows reads and
wntes to video RAM without causmg hashing on the screen
The cIrcu1t that performs this function ,s a 74LS244 buffer
(U84), an 8 bit transparent latch, 74LS373 (U83) and a Delay
hne cIrcuIt shared with Dynamic RAM timing circuit consisting
of a 74LS74 (U98), 74LS32 (U96), 74LS04 (U95), 74LSOO
(U92), 74LS02 (U69), and Delay Line (U94) During a CPU
Read Access to the Video RAM, the address Is decoded by the
GA 4 2 and asserts VIDEO" low This ,s inverted by U95 (1 6 of
74LS04) which pulls one input of U92 (1 4 of 74LSOO) and in
turn asserts VWAIT * low to the CPU RD IS high at this lime and
Is latched into U98 (1 2 of 74LS74) on the nsIng edge of
XADR?', inverse of CRTCLK

When RD Is latched by U98 the Q output goes low releasing
WAIT* from the CPU The same signal also Is sent to the Delay
Line (U94) through Ul 17 (1 4 of 74F08) The Delay line delays
the fathng edge 240 ns for VLATCH* which latches the read
data from the video RAM at U83 The data Is latched so the
CRTC can refresh the next address location and prevent any
hashing MAO· decoded by U106 and a memory read Is ORed
with VIDEO" which enables the data from U83 to the data bus
The CPU then reads the data and completes the cycle A CPU
wnte Is slightly more complex m operation As m the RD cycle,
VIDEO* Is asserted low which asserts VWAIT* low to the CPU
WA Is h1gh at this ttme which Is NANDed with VIDEO and
synced with CRTCLK to create VRAMDIS that disables the
video RAM output On the nsIng edge of XAOR?", WR Is
latched into U98 (1 2 of 74LS74) which releases VWAtr and
starts cycle through the Delay Line After 30ns DLYVWR" (De
layed video wnte) Is asserted low which also asserts VBUFEN*
(Video Buffer Enable) low VBUFEN* enabled data from the
Data bus to the video RAM Approximately 120ns later
OLYVWR" ts negated high which wntes the data to the video
RAM and negates VBUFEN" turning off buffer The CPU then
completes WA cycle to the video RAM Refer to Video RAM
CPU Access T1mmg Figure 5-12 for tImIng of above RD or WR
cycles

Ounng screen refresh, CRTCLK Is high allowmg the CRTC
to address Video RAM The data out of the video RAM Is
latched by LOAD" into Gate Array 4 3 (U102) INVERSE"
determines If character should be alpha-numenc only {IN•
VERSE" high) or unchanged (INVERSE" low) A9 Is de·
coded with ENALTSET (Enable Alternate Set) and 7, which
controls the alternate set In the character generator ROM
See ENALTSET Control Table below

ENALTSET 07 06 A9
0 0 0 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 0

Hardware 130

0

:c a
::;;
@
~

"' ~

-
2JM

PCLK*

A~-AlS

MREQ

RD

WR

CRTCLK

XADR7*

VIDEO*

VIDEO

U98 .8

VWAIT*

VRAMDIS

DLYVWR*

VBUFEN*

VLATCH*

U83 .1

Tl

RD CYCLE

T2 TW T3

\..__)

Tl T2

Pia]ff& -1•11. Video 11AM CIIII nNll8

WR CYCLE

Tw Tw T3

-
Tl

RA0-RA3, row addresses from the CRTC are useo to control
which scan lme Is being displayed The Model 4P has a 4-bit full
adder 74LS283 (U101) to modify the Row address During a
character display DLYGRAPHIC" Is high which applies a high to
all 4 bits to be added to row address This will result In subtract
Ing one from Row address count and allow all characters to be
displayed one scan hne lower The purpose Is so inverse char
acters will appear w1th1n the inverse block When a graphic
block Is displayed DLYGRAPHlC" Is tow which causes the row
address to be unmodified Moving Jumper from E14·E15 to
E15•E16 will disable this c1rcu1t

DLYCHAR" and DLYGRAPHICS are inverse signals and control
which data ,s to be loaded mto the internal shift register of U102
When DLYCHAR" Is low and DLYGRAPHIC" Is high, the Char
acter Generator ROM (U103) 1s enabled to output data When
DLYCHAR" Is high and DLYGRAPHIC" ,slow the graphics char
acters are internally buttered to the shift register The data Is
loaded mto the internal shift register on the nsmg edge of
SHIFT* when LOADS" Is low Senal video data IS output
U102 19 The video 1nformat1on Is inverted by U142 and F83, 1s
filtered by R14 (47 ohm resistor), and C227 (100 pf Cap) and
output to video monitor VSYNC and HSYNC are buffered by (1 1

2 of 74LS86) U143 and are also output to video monitor Refer
to Video Circuit T1mmg Figure 4-12 and Inverse Video Tim
mg Figure 4-13 for t1mIng relatIonshIps of Video C1rcu1t

4.2.9 Keyboard

The keyboard Intertace of the Model 4P consists of open col
lector drivers which dnve an 8 by 8 key matnx keyboard and an
inverting buffer which buffers the key or keys pressed on the
data bus The open collector dnvers (U57 and U77 (7416) are
dnven by address lines A0-A7 which dnve the column hnes of
the keyboard matnx The ROW hnes of the keyboard are pulled
up by a 1 5 kohm resistor pack RP2 The ROW Imes are buff
ered and inverted onto the data bus by U78 (74LS240) which ,s
enabled when KEYBD" IS a logic low KEYBD* IS a memory
mapped decode of addresses 3800-3BFF In Model Ill Mode
and F400-F7FF m Model 4/4P mode Refer to the Memory Map
under Address Decode for more information Dunng real time
operation, the CPU will scan the keyboard penod1cally to check
1f any keys are pressed If no key Is pressed, the resistor pack
RP2 keeps the inputs of U78 at a logic high U78 mverts the
data to a logic low and buffers It to the data bus which Is read
by the CPU If a key Is pressed when the CPU scans the correct
column line, the key pressed will pull the corresponding row to
a logic low U78 inverts the signal to a logic high which Is read
by the CPU

4.2.10 Real Time Clock

The Real Time Clock ClfCUII m the Model 4P provides a 30 Hz
(1n the 2 MHz CPU mode) or 60 Hz (,n the 4 MHz CPU mode)
interrupt to the CPU By counting the number of interrupts that
have occurred the CPU can keep track of the time The 60 Hz
vertical sync signal (VSYNC) from the video c1rcuItry Is used for
the Real Time Clocks reference In the 2 MHz mode, FAST Is
a logic low which sets the Preset input pin 4 of U23 (74LS74)
lo a logic high This allows the 60 Hz (VSYNC) to be d1v1ded by
2 to 30 Hz The output of 1/2 of U23 Is ORed with the ongmal
60 Hz and then clocks another 74LS74 (1 2 of U23) If the real
time clock Is enabled (ENRTC at a logic high). the interrupt ,s
latched and pulls the INT" hne low to the CPU When the CPU
recognizes the interrupt, the pulse 1s counted and the latch re
set by pulling RTCIN" low In the 4 MHz mode, FAST Is a logic
high which keeps the first half of U23 In a preset state (the Q*
output at a logic low) The 60 Hz Is used to clock the interrupts

NOTE: If interrupts are disabled, the accuracy of the real
t,me clock will suffer

4.2.11 Line Printer Port

The Line Printer Port Interface consists of a pulse generator, an
eIght-bIt latch, and a status hne buffer The status of the lme
printer ,s read by the CPU by enabling buffer U3 (74LS244/
This buffer 1s enabled by LPRD* which Is a memory map and
port map decode In Model Ill mode, only the status can be read
from memory location 37E8 or 37E9 The status can be read In
all modes by an input from ports F8-FB For c::1 hstmg of the bit
status, refer to Port Map section

After the printer dnver software determines that the pnnter Is
ready for pnntIng (by reading the correct status) the characters
to be printed are output to Port F8-FB U2, a 74LS374 eIght-bIt
latch, latches the character byte and outputs to the lme pnnter
One-half of U1 (74LS123), a one-shot, ,s then triggered which
generates an appropnate strobe signal to the printer which sIg
n1fles a vahd character Is ready The output of the one-shot 1s
buffered by 116th of the U51 (74LS04) to prevent noise from the
printer cable from false-tnggenng the one-shot

Hardware 132

-

0

•

::c .,
a. =: .,
iil
~

"' "'

w '
IRMS _,

Wawform Waveform

Symbol
Input Output Symbol

Input Outout

\1u">l Be Nill Be Dor, Care U1ang1ng

Va ,,j '/~1,(1 (i/X;IX;OX :,,,,,v Chariqe 5 1a:e
='~•rr11tteo -.,nl."QWM

\\\'\\\ (l"-JnqP Will Chanqe

F•cmHlOL F1om H to L w,'lri

~ 11roenance

1700 (lianqe W111 Change
;.,om L 10 r-1 From L 10 H

CRTCLK

082 x SRA.0-SRAl.0
CPU ADD. y CRTC ADD, I CPU ADD. I CRTC ADD. X CPU ADD. ~

U82
SRO~ - SRD7

VALID DATA VALID DATA VALID DATA VALID DATA VALID DATA

LOAD* 7.J u LI
Ul~2

CGA3-CGA1.0

CHAR m rxxmx xxmxx xmv1xw MXXX&YWXXXVXXXXXXW ~xxxxxxxxYYY½\Xxx
DLYCHAR*

DLYGRAPHIC*

cGo~:~~01 : WYYVXXXXXYYI VALID DATA fflx'X'x)) Jll'l''f'7'1~nr"'f"T"I",,.,...,. ...
GRAPHICS r:J.XXXXX'6MX'/2MX't,. =
DATA
INTERNAL
UU2

SHIFT*

SHIFT/LO
INTERNAL 7......J
TO Ul~2

VOUT*
Ul~2.19

VALID DATA

\ I \ I

Figure 4-12. Video Circuit Timing

CRTCLK ' I ~~ \ ' \ I ' ' L
U82 I CPU ADD. fcRTC ADD.J ;; JCRTC ADD.J CPU ADD.ICRTC ADD.I CPU ADD. lCRTC ADD.J CPU ADD. lCRTC ADD. SRA,0-SRAl,0

U82
SRD,0-SRD7

u u (f u LOAD* u u u
Ul,02

X X
(i-

X X X 'C. CGA3-CGA1,0 ,j f
Ul,02 tfifWJS:r _nwm l<XXXM MXM MYSM m CGD.0-CGD7

:i: .,
SHIFT* a_

~ .,
f ;;; u u u u-- LOADS*

~
DISPEN

DLYDISPEN r' INTERNAL
TO Ul,02

DLYBLANK r INTERNAL
TO Ul,02

f SHIFT/LO u Lr INTERNAL
TO Ul,02 ·IJ:Irarcca:Y::J/;rrrm VOUT* ra:::J.::J:JJ:: Ul,02.19

Figure 4-13. Video Blanking Timing

t> 0

" \..) .,
CR'l'CLlt ~ \ I \ I \ I \ I \
U82 CRTC AOo.x CPU ADD. ICRTC ADDJ CPU ADD. ICRTC ADD .1 CPU ADD. ICRTC ADD.I CPU ADD. 1CRTC ADD.I CPU ADD. ICRTC ADD.

SRA,0-SRAl,0

U82
SRD,0-SRD7 -{ D7t DH, 07 ' 07' 07 1 D7 _t

LOAD*~ u u u u u
Ul,02 X CGA3-CGA1,0 X X X X X
Uljl2 fflWQl CGD,0-CGD7 mm W'MYJt ®® wxx@ wxmti mxr
SHIFT*

SHIFT/LO
::i: INTERNAL ""1J .,
a. TO Uljl2 u u u u LI
:E .,
'" INVERSE -"' 01 INVERSE*

IIITERNAL TO Uljl2

VIDEO DATA
INTERNAL TO Uljl2

VOUT*
Uljl2.19

FlguM 4•14. ln-.e Video Timint

4.2.12 Graphics Port

The Graphics Port (J7) on the Model 4P 1s provided to attach
the optional Graphrcs Board The port provides D0-O7 (Data
Lrnes) A0-A3 (Address Lrnes) IN" GEN" and RESET" for the
necessary intertace signals for the Graphics Board GEN. rs
generated by negatrve ORrng Port selects GSEL0" (8C-8FH)
and GSELi" (80·83H) together by (1 4 of 74LS08) U4 The re
sultrng srgnal rs negatrve ANDed wrth IORQ" by (1 4 of 74S32)
U24 Seven t1m1ng signals are provided to allow synchron1za
t1on of Main Logic Board Video and Graphics Board Video
These tImIng signals are VSYNC, HSYNC, DISPEN, DCLK,
H, I, and J Three control signals from the Graphics Board
are used to sync to CPU access and select different video
modes WAIT" controls the CPU access by causing the CPU
to WAIT till video 1s 1n retrace area before allowing any
writes or reads to Graphics Board RAM ENGRAF 1s as
serted when Graphics video 1s displayed ENGRAF also dis
ables inverse video mode on Mam Logic Board Video
CL166" (Clear 74L166) Is used to enable or disable mrxrng
of Mam Logic Board Video and Graphics Board Video If
CL 166* Is negated high, then mIxmg Is allowed m all four
Video modes 80 x 24, 40 x 24, 64 x 16, and 32 x 16 If
CL 166* Is asserted low, this will clear the video shift register
U63, which allows no video from the Mam Logic Board In
this state 8064 * 1s automatically asserted low to put screen
m 80 x 24 video mode Refer to Figure 4-15 Graphic Board
Video T1mmg for timing relatIonshIps Refer to the Model 4/
4P Graphics Board Service mformatIon for service or techni
cal information on the Graphics Board

4.2.13 Sound

The sound circuit In the Model 4P Is compatible wtth the Sound
Board which was optional In the Model 4 Sound Is generated
by alternately setting and cleanng data bit DO during an OUT to
port 90H The state of DO IS latched by U129 (1 2 of a 74LS74)
and the output Is amphf1ed by 02 wh1ch dnves a 8f ~ speaker
The speed of the software loop determines the frequency and
thus, the pitch of the resulting tone Since the Model 4P does
not have a cassette circuit, some existing software that used
the cassette output for sound would have been lost The Model
4P routes the cassette latch to the sound board through Ut 09
When the CASSMOTORON signal Is a logic low the cassette
motor Is off, then the cassette output Is sent to the sound cIrcurt

4.2.14 1/0 Bus Port

The Model 4P Bus Is designed to allow easy and convenient m
terfac1ng of I O devices to the Model 4P The I O Bus supports
all the signals necessary to implement a device compatible with
the 280s I O structure

Addresses

AO to A? allow selection of up to 256" input and 256 output
devices If external I O Is enabled

"Ports 80H to 0FFH are reserved for System use

Data

DB0 to D87 allow transfer of 8-bIt data onto the processor
data bus Is external 110 Is enabled

Control Lines

M 1 • - Z80A signal specifying an M 1 or Operation Code
Fetch Cycle or with IOREQ" ,t specrf1es an Interrupt
acknowledge

2 IN" - ZB0A signal specrfymg than an input Is In progress
Logic AND of IOREQ' and WR"

3 our - Z80A signal spec1fy1ng that an output Is m prog
ress Logrc AND of IOREQ" and WR"

4 IOREQ" - Z80A signal specifying that an input or output
1s In progress or with M 1 • 11 specifies an interrupt
acknowledge

5 RESET" - system reset signal

6 IOBUSINT" - mput to the CPU s1gnalIng an interrupt from
an I O Bus device 1f I O Bus interrupts are enabled

7 IOBUSWAlr - input to the CPU wait hne allowing I O Bus
device to force wart states on the 280 1f external I O Is
enabled

8 EXTIOSEL • - mput to I O Bus Port circuit which switches
the IO Bus data bus transceiver and allows and INPUT in
struction to read I O Bus data

The address line data hne and alt control Imes except RESET"
are enabled only when the ENEXlO bit In port EC Is set to one

To enable t O interrupts the ENIOBUSINT bit In the PORT E0
(output port) must be a one However even If 11 Is disabled from
generating mterrupts the status of the IOBUSINT" lme can st1II
read on the appropnate bit of CPU IOPORT E0 (input port)

See Model 4P Port Bit assignments for port OFF 0EC and 0E0

Hardware 136

-

0

•

11, l.J -

GRAFVID X I I y l y X l I y >-
ENGRAF

CL166*

Ul43.8 ::x I LI I I I a Cl 0 y)
J: ..

DOT* or I a

' ' \ n ' ' n ' ' ' ' n ' ' 1 ' ' ' r :, .. DCLK
al - l l I l I l X I l I I l l ~ l I □ l I l I "' VOUT

Figure 4-15. Graphic Board Video Timing

The Model 4P CPU board ,s fully protected from foreign I Ode
vices m that all the I O Bus signals are buffered and can be dis
abled under software control To attach and use and I O device
on the IO Bus certain requirements (both hardware and soft
ware) must be met

For mput port device use, you must enable external l/O de
vices by wntmg to port 0ECH with bit 4 on m the user soft
ware This will enable the data bus address Imes and control
signals to the 1/0 Bus edge connector When the input de
vice Is selected, the hardware should acknowledge by as
serting EXTIOSEL· low This switches the data bus
transceiver and allows the CPU to read the contents of the I/
0 Bus data Imes See Figure 4-16 for the tImmg EXTIO
SEL • can be generated by NANOIng IN and the 1/0 port
address

Output port device use Is the same as the mput port device ,n
use, m that the external IO devices must be enabled by wntmg
to port DECH with bit 4 on m the user software - m the same
lash1on

For either input or output devices, the 1OBUSWArr control hne
can be used In the normal way for synchrornzmg slow devices
to the CPU Note that smce dynamic memories are used tn the
Model 4P, the wait hne should be used with caution Holding the
CPU In a watt state for 2 msec or more may cause loss of mem
ory contents smce refresh Is 1nhIbIted during this time II Is rec
ommended that the IOBUSWAIT" hne be held active no more
than 500 µsec with a 25% duty cycle

The Model 4P will support 280 Mode 1 interrupts A RAM Jump
table Is supported by the LEVEL II BASIC ROMs image and the
user must supply the address of his interrupt service routine by
wntIng this address to locations 403E and 403F When an in
terrupt occurs, the program w,11 be vectored to the user-sup
phed address 11 1,0 Bus interrupts have been enabled To
enable l10 Bus interrupts, the user must set bit 3 of Port 0E0H

4.2.15 FOC Circuit

The TRS-80 Model 4P Floppy Disk Interface provIces a stan
dard 5-1 4 floppy disk controller The Floppy Disk Interface
supports both single and double density encoding schemes
Wnte precompensatIon can be software enabled or disabled
beginning at any track, although the system software enables
wnte precompensallon for all tracks greater than twenty-one
The amount of wnte precompensatIon Is 125 nsec and Is not
adJustable One or two dnves may be controlled by the inter
face All data transfers are accomphshed by CPU data re
quests In double density operation, data transfers are
synchronized to the CPU by forcmg a wait to the CPU and clear
mg the wait by a data request from the FOG chip The end of the
data transfer Is IndIcated by generation of a non-maskable m
terrupl from the mlerrupt request output of lhe FOC chip A
hardware watchdog trmer msures that any error condIt1on will
not hang the wait hne to the CPU for a penod long enough to
destroy RAM contents

Hardware 138

0

•

Input or Output Cycles

T, T, '· - ,,
__, \ ____, L._ r-\.

At A7
- [X PORT ADDRESS

-
IORO"

Ro·

I

0ATA8US

'"
WAIT" - ~---· ----- =r-c'. ------ ~--- ____

~----

WR"

'
,

DATA8US
,
'

OUT

Input or Output Cycles with Wait States

T, T, T•" T• T,

At A7 PORT ADDRESS

IOAO"

DATA BUS

Ro•

WAIT"

DATA BUS OUT

WR"

tEXTIOSEL •

-lntt'1ff by Z80 CPU

tCamc..S.n1 wl1h IORO" only on INPUT o;y,;I•

-
Figure 4-16. 1/0 Bus Timing Diagram

Hardware 139

T,

' I

-~~--

REAO
CYCLE

WRITE
CYCLE

READ
CYCLE

l WROTE
CYCLE

Control and Data Buffering

The Floppy Disk Controller Board 1s an I O port mapped device
which ut1hzes ports E4H FOH F1 H F2H F3H and F4H The
decoding logic 1s implemented on the CPU board (Refer to Par
agraph 5 1 5 Address Decoding for more 1nformat1on on Port
Map) U70 1s a b1-d•rect1onal 8-b1t transceiver used to buffer
data to and from the FOC and RS-232 c1rcu1ts The d1rect1on of
data transfer 1s controlled by the comb1nat1on of control signals
DISKIN" RS2321N· RDINT" and RDNMI" If any of these sig
nals 1s active (logic low) U70 1s enabled to dnve data onto the
CPU data bus If both signals are mactive (logic high) U70 ,S
enabled to receive data from the CPU board data bus A sec
ond buffer (U36) 1s used to buffer the FDC chip data to the FDC
RS232 Data Bus (BDO·BD7) U36 1s enabled all the time and
1ts d1rect1on controlled by DISKIN" Again 1f DISKIN" 1s active
(logic low), data 1s enabled to dnve from the FDC chip to the
Mam Data Susses If DISKIN· 1s mact1ve (logic high) data 1s en
abled to be transferred to the FOC chip

Nonmaskable Interrupt Logic

Gate Array 4 4 (U18) 1s used to latch data bits 06 and 07 on the
nsmg edge of the control signal WRNMI" This enables the con
d1t1ons which will generate a non-maskab1e mterrupt to the
CPU The NMI interrupt conditions which are programmed by
doing an OUT instruction to port E4H with the appropnate bits
set If data bit 7 1s set an FOC mterrupt 1s enabled to generate
an NMI interrupt If data bit 71s reset interrupt requests request
from the FOC are disabled If data bit 6 1s set a Motor Time Out
1s enabled to generate an NMI interrupt If data bit 6 1s reset, in
terrupts on Motor Time Out are disabled An IN 1nstruct1on from
port E4H enables the CPU to determine the source of the non
maskable interrupt Data blt 7 1nd1cates the status of FDC in
terrupt request (INTRO) (0 = true, 1 = false) Data bit 6 1nd1cates
the status of Motor Time Out (0 = true, 1 = false) Data bit 5 1n
d1cates the status of the Reset signal (0 = true 1 = false) The
control signal RDNMI. gates th,s status onto the CPU data bus
when active (logic low)

Drive Select Latch and Motor ON Logic

Selecting a dnve pnor to disk I O operation 1s accomphshed by
doing an OUT mstruct1on to port F4H with the proper bit set The
following table descnbes the bit allocation of the Onve Select
Latch

Data Bit Function
DO Selects Onve O when set·

D1 Selects Onve 1 when ser

02 Selects Dnve 2 when ser

03 Selects Dnve 3 when ser

04 Selects Side O when reset
Selects Side 1 when set

D5 Wnte precompensat1on enabled when set.
disabled when reset

DIS Generates WAIT ,f set

07 Selects MFM mode 1f set
Selects FM mode ,f reset

"Only one of these bits should be set per output

Hex O fllp-flop U54 (74L 174) latches the dnve select bits side
select and FM" MFM bits on the nsmg edge of the control signal
DRVSEL· Gate Array 4 4 (U18) 1s used to latch the Wait Ena
ble and Wnte precompensal1on enable bits on the ns1ng edge
of ORVSEL • The nsmg edge of ORVSEL • also tnggers a one
shot (1 2 of U54 74LS123) which produces a Motor On to the
disk drives The duration of the Motor On signal 1s approxi
mately three seconds The spindle motors are not designed for
contmuous operation Therefore the macttve state of the Motor
On signal 1s used to clear the Dnve Select Latch which de-se
lects any dnves which were previously selected The Motor On
one-shot 1s retnggerable by simply executing another OUT in

struction to the Onve Select Latch

Wait State Generation and WAITIMOUT Logic

As previously mentioned, a wait state to the CPU can be 1rnt1-

ated by an OUT to the Dnve Select Latch with 06 set Pin 18 of
U18 will go high after this operation This signal 1s inverted by
114th of U15 and 1s routed to the CPU where 1t forces the ZBOA
mto a wait state The ZBOA will remam in the wait state as long
as WAIT" 1s low Once 1rnt1ated, the WAIT" will remain tow until
one of five cond1t1ons 1s sat1sf1ed If INTRO, ORO and RESET,
mputs become active {logic high) 11 causes WAIT" to go high
which allows the 280 to exit the wait state An internal timer m
U18 serves as a watchdog timer to insure that a wait cond1t1on
will not persrst long enough to destroy dynamic RAM contents
This internal watchdog timer logic w1ll llm1t the duration of a wait
to 1024µsec, even 11 the FOC chip should fail to generate a
DRQ or an INTRO

If an OUT to Dnve Select Latch 1s 1rnt1ated with D6 reset {logic
low), a WAIT 1s slill generated The internal timer 1n U18 will
count to 2 which w,n clear the WAIT state This allows the WAIT
to occur only dunng the OUT 1nstruct1on to prevent v1olatmg any
Dynamic RAM parameters

NOTE: This automatic WAIT will cause a 5-1 µsec wait each
time an out to Dnve Select Latch 1s performed

Hardware 140

0

-

•

Clock Generation Logic

A 16 MHz crystal oscillator and a Gate Array 4.4 (U18) are used

to generate the clock signals required by the FDC board. The 6
MHz oscillator is implemented internal to U18 and a quartz
crystal (Y2). The output of the osc1llator 1s d1v1ded by 2 to gen

erate an 8 MHz clock. This 1s used by the FOG 1773 for all in

ternal timing and data separation. U18 further divides the 16
MHz clock to drive the watchdog timer circuit.

Disk Bus Output Drivers

High current open collector drivers U15 and U34 are used to
buffer the output signals from the FDC circuit to the disk drives.

Write Precompensation and Write Data Pulse Shap
ing Logic

All Write Precompensation is generated internal to the FDC
chip 1773 (U17). Write Precompensation is enabled when
W6 goes high and Write Precompensation is enabled from
software. This signal is multiplexed with ADY by W6 is fed
into pin 20 of Ul 7. Write Data is output pin 22 of U17 and is
shaped by a one·shot (1 /2 of U56) which stretches the data
pulses to approximately 500 nsec .

Hardware 141

Floppy Disk Controller Chip

The 1773 1s an MOS LSI device which performs the functions
of a floppy disk formatter controller 1n a single chip 1mplemen
tat1on The following port addresses are assigned to the internal
registers of the 1773 FDC chip

Port No.
FOH
F1H
F2H
F3H

Function
Command Status Reg1ster

Track Register
Sector Register
Data Register

4.2.16 RS-232-C Circuit

RS-232C Technical Description

The RS-232C c1rcwt for the Model 4P computer supports
asynchronous serial transm1ss1ons and conforms to the EIA
RS-232C standards at the input-output interface connector
(J4) The heart of the circuit 1s the TR1865 Asynchronous
Rece1ver/Transm1tter U33 It performs the Job of converting
the parallel byte data from the CPU to a serial data stream
including start. stop, and panty bits For a more detailed de
scnpt1on of how this LSI circuit pertorms these functions, re
fer to the TR1865 data sheets and apphcat1on notes The
transmit and receive clock rates that the TA1865 needs are
supplied by the Baud Rate Generator U73 (BR1943) This
circuit takes the 5 0688 MHz supplied by the system t1m1ng
circuit and the programmed information received from the
CPU over the data bus and d1v1des the basic clock rate to
provide two clocks The rates available from the BAG go
from 50 Baud 10 19200 Baud See the BRG table for the
complete list

BRG Programming Table

Transmit'
Receive Supported

Nibble Baud 16X by
Loaded Rate Clock SETCOM

OH 50 0 8 kHz Ya
1H 75 1 2 kHz V.
2H 110 1 76 kHz V.
3H 134 5 2 1523 kHz V.
4H 150 2 4 kHz V.
5H 300 4 8 kHz V.
6H 600 96kHz Yes
7H 1200 19 2 kHz V.
8H 1800 28 8 kHz Yes
9H 2000 32 081 kHz V.
AH 2400 38 4 kHz Vee
BH 3600 57 6 kHz Yes
CH 4800 76 8 kHz 'Ills
DH 7200 1152kHz V.
EH 9600 1536kHz Yes
FH 19200 307 2 kHz Yea

The RS-232C circuit ts port mapped and the ports used are EB
to EB Following 1s a descnpt1on of each port on both input and
output

Port Input Output
E8 Modem status Master Reset, enables UART

control register load
EA UART status UART control register load and

modem control

E9 Not Used Baud rate register load enable
btt

EB Receiver Holding Transmitter Holding
register register

Interrupts are supported in the RS-232C c1rcu1t by the Interrupt
mask register and the Status register internal to GA 4 5 (U31)
which allow the CPU to see which kind of interrupt has oc
curred Interrupts can be generated on receiver data register
full, transmitter register empty, and any one of the errors- par
ity, framing, or data overrun This allows a minimum of CPU
overhead in transferring data to or from the UART The interrupt
mask register 1s port E0 (wnte) and the interrupt status register
1s port E0 (read) Refer to the 10 Port description for a full break
down of all interrupts and their bit pos1t1ons

Hardware 142

-

•

.,

All Model I. Ill, and 4 software written for the RS-232-C interface

is compatible with the Model 4P RS-232-C ctrcuit, provided the

software does not use the sense switches to configure the in
terface. The programmer can get around this problem by di
rectly programming the BAG and UART for the desired
configuration or by using the SETCOM command of the disk
operating system to configure the interface. The TRS-80 RS-
232C Interface hardware manual has a good discussion of the

RS-232C standard and specific programming examples (Cat
alog Number 26-1145).

Pinout Listing

The following list is a pinout description of the 08-25 connector

(P1).

Pin No.
1

2
3
4

5
6
7
8

19
20
22

Signal
PGND (Protective Ground)
TD (Transmit Data)
RD (Receive Data)
RTS (Request to Send)
CTS (Clear To Send)
DSR (Data Set Ready)
SGND (Signal Ground)
CD (Carrier Detect)
SRTS (Spare Request to Send)
DTR (Data Terminal Ready)
RI (Ring Indicate)

Hardware 143

Model 4P Gate Array
1/0 Pin Assignments

J1 J2 J3

Pin Signal Pin Signal Pin Signal
No. No. No.

1. DATA STROBE 1. XD0 1 . XD0
2. GND 2. GND 2. GND
3. PDQ 3. XD1 3. XD1
4. GND 4. GND 4. GND
5. PD1 5. XD2 5. XD2
6. GND 6. GND 6. GND
7. PD2 7. XD3 7. XD3
8. GND 8. GND 8. GND
9. PD3 9. XD4 9. XD4

10. GND 10. GND 10. GND
11. PD4 11. XD5 11. XD5
12. GND 12. GND 12. GND
13. PD5 13. XD6 13. XD6
14. GND 14. GND 14. GND
15. PD6 15. XD7 15. XD7
16. GND 16. GND 16. GND
17. PD? 17. XA0 17. XA0
18. GND 18. GND 18. GND
19. NIA 19. XA1 19. XA1
20. GND 20. GND 20. GND
21. BUSY 21. XA2 21. XA2
22. GND 22. GND 22. GND
23. OUTPAPER 23. XA3 23. XA3
24. GND 24. GND 24. GND
25. UNIT SELECT 25. XA4 25. XA4
26. NC 26. GND 26. GND
27. GND 27. XA5 27. XA5
28. FAULT 28. GND 28. GND
29. NIA 29. XA6 29. XA6
30. NIA 30. GND 30. GND
31. NC 31. XA7 31. XA7
32. NIA 32. GND 32. GND 0 33. NC 33. XIN' 33. XIN'
34. GND 34. GND 34. GND
35. 35. xour 35. xouT·
36. 36. GND 36. GND
37. 37. XRESET" 37. XRESET"
311. 38. GND 38. GND
39. 39. iOBUSINT" 39. IOBUSINT"
40. 40. GND 40. GND
41. 41. IOBUSWAIT' 41. iOBUSWAlr
42. 42. GND 42. GND
43. 43. EXTIOSEL" 43. EXTIOSEL"
44. 44. GND 44. GND
46. 45. NC 45. NC
48. 46. GND 46. GND
47. 47. XMI" 47. XMI"
48. 48. GND 48 . GND •• 49. XIOREQ" 49. XIOREQ"
50. 50. GND 50. GND

/ •
Hardware 144

J4 JS .n J9

Pin Signal Pin Signal Pin Signal Pin Signal
No. No. No. No.

1. PGND 1. GND 1. DO 1. GND
2. TD 2. 2. 01 2. VOUT
3. RD 3. GND 3. 02 3. GND
4. CTS 4. 4. 03 4. VERTSYNC"
5. DSR 5. GND 5 . 04 5. GND
6. CD 6. .

~ 6. D5 6. HORZSYNC --
"

7. SGND 7. GND 7. D6 7.
8. CD 8. DIP" 8. D7 8.
9. 9. GND 9. GEN" 9.

10. 10. oso· 10. DCLK 10.
11. 11. GND 11. AO 11.
12. 12. Ds1· 12. A1 12.
13. 13. GND 13 . A2 13.
14. 14.

. .
~ 14. J 1◄.

15. 15. GND 15. GRAFVID 1$.
16. 16. MOTORON" 16. ENGRAF 18.
17. 17. GND 17. DISPEN 17.
18. 18. DIR" 18. VSYNC 18.
19. SRTS 19. GND 19. HSYNC 19.
20. DTR 20. STEP" 20. RESEr 20.
21. 21. GND 21. WAIT" 21.
22. RI 22. wo· 22. H 22.
23. 23. GND 23. I 23.
24. 24. WG" 24. IN" 24.
25. 25. GND 25. GND 25.
26. 26. DTRK0" 26. +5V 28.
27. 27. GND 27. 27.
28. 28. DWPRr 28. CL166" 28.
29. 29. GND 29. GND 29.
30. 30. DRRD' 30. +5V 30.
31. 31. GND 31. GND 31.
32. 32. SDSEL 32. +5V 32.
33. 33. GND 33. GND 33.
34. 34. 34. +5V 34.

,1 ~A

1 :-; d
.; ; 3 1.,./, <J •

'J
.,, ...,
~ cl. Q

4
,, ", ,I = "'

I' , ;;i ~ u.,. I,) .
~ 0 :-.,

Hardware 145

0

I
SECTION V

CHIP SPECIFICATIONS

•
Hardware 14 7

0

•

CHIP SPECIFICATIONS -- 4 4P 4 GATE ARRAY 4P GATE ARRAY

Motorola Motorola Motorola Motorola

MC 6835 MC 6835 MC 6835 MC 6835

Western Digital Western Digital Western Digital

BR 1943 BR 1943 BR 1943

(BR1941L)

FD 1793 TR 1865 TR 1865

(WD 179X)

FDC 9216 WD 1773 WD 1773

TR 1865

WD 1943-00 MATRA MATRA

MMI MMI Timing A. (4.1.1) Timing A. (4.1.1)

PAL 16RGA (166) PAL 16RGA S.T. Address A. (4.2.0) Address A. (4.2 .0)
_,/

PAL 1 0L8 (208) PAL 10L8 V.T. Video A. (4.3.0) Video A. (4.3.0)

PAL 1 0L8 C.T.

PAL 16L8 (268) PAL 16L8 MeMep VTI VTI

PAL 16L8 (368) PAL 16L8 Page Mep FDC A. (4.4.0) FDC A. (4.4.0)

RS-232 A. (4.5.0) RS-232 A. (4.5.0)

Zilog Zilog Zilog Zilog

280 A 280 A 280 A 280 A

.,

Hardware 149

0

-

I

.. .,

ARRAY#: 4.1.1

CIRCUIT NAME: System Timing

NO. OF PINS: 24

MAX. CLOCK FREQ.: 20.2752 MHz

OPER TEMP.: 0° C to 70° C

OPERATING VOLTAGE & RANGE: 5 V + 5%

Hardware 151

20. 2752 .J_
osc. i--MHZ c:::J

CRYSTAL T
• 1.2672MHz

~L

16

12.672MHz
NE564 ' r1

l.2672MHZ 10

FAST

&,6'64* -

MODSEL -
MM'f -

24 PIN CHIP

Hardware 152

-

-

-

.
.

PCLK
RS232CLK

SHIFT*
XADR7*
CRTCLK
LOADS*
DDT*
LOAD*
DCLK

H

I

J

•

0

-

XTALJ/ CD V @ vcc

XTALl ® @ PCLK

l.2Ml6 0 @ RS232CLK

12M 0 @ SHIFT*

l.2ML0' ® @ XADR7*

FAST © @ CRTCLK

\ 8,0'6 4 * 0 4.1.l @ LOADS*
.I MODSEL ® @ DOT*

MM G) @ LOAD*

N.C. @ @ DCLK

J @ {B)H
GND @ @r

Hardware 153

SYSTEM TIMING SPECS

NUMBER PARAMETER MIN. TYP. MAX. UNITS

1 20M Cycle Time 49.3 111
2 20M Pulse Width (High) 20 nt
3 20M Pulse Width (Low) 20 ns
4 10M Cycle Time 98.6 111

5 10M Pulse Width (High) 45 40 nt
6 10M Pulse Width (Low) 45 40 ns
7 RS232CLK Cycle Time 197.2 ns
8 RS232CLK Pulse Width (High) 92 nt
9 RS232CK Pulse Width (Low) 92 ns

10 PCLK* (Fast) Cycle Time 246.6 111
11 PCLK* (Fast) Pulse Width (H,gh) 110 111
12 PCLK* (Fast) Pulse Width (Low) 110 ns
13 PCLK* (/Fast) Cycle Time 493.2 ns
14 PCLK* I/Fast) Pulse Width (High) 180 ns
15 PCLK* I/Fast) Pulse Width (Low) 180 ns
16 PCLK * Rise Time 13 ns
17 PCLK * Fall Time 13 m

DC CHARACTERISTICS (ALL PINS)

Input Voltage Level (High) 2.0 V
Input Voltage Level (Low) .8 V
Output Voltage Level (High) 2.8 3.6 V
Output Voltage Level (Low) .36 .5 V

(ALL PINS EXCEPT CRTCLK OUTPUT)

Input Current Level (High) 40 pa
Input Current Level (Low) -1.6 ma

0 Output Current Level (High) -160 pa
Output Current Level (Low) 3.2 ma

(CRTCLK OUTPUT)

Output Current Level (High) -400 pa
Output Current Level (Low) 8 ffll

•
Hardware 154

._ \..) .,

2.lrM

lOM*

RS232CLK* J 0) ·l t:©-+-0-i
1_ I I I I/ :---L

PCLK (PAST)

:c
1--------11 o,,__ __ _ lr--+-----(12i}------!

I
~

8:

PCLK* (FAST)

~
PCLK (/FAST)

PCLK* (/FAST) t ? •\ -------,.. @ I, 0 -l

SYSTEM TIMING

VIDEO TIMING SPECS

10.1376 MHz 12.672 MHz

NUMBER PARAMETER MIN. TYP. MAX. MIN. TYP. MAX. UNITS

1 VCLK Cycle Time 98.6 78.9 ns
2 VCLK Pulse Width (High) 40 30 ns
3 VCLK Pulse Width (Low) 40 30 ns
4 OCLK Cycle Time 98.6 78.9 ns
5 DCLK Pulse Width (High) 40 30 ns
6 DCLK Pulse Width (Low) 40 30 ns
7 DOT Cycle Time 98.6 78.9 ns
8 DOT Pulse Width (High) 40 30 ns
9 DOT Pulse Width (Low) 40 30 ns

10 DCLK > to DOT t 6 5 ns
11 DCLK tto H, I, J H 27 27 ns
12 H Cycle Time 197.2 157.8 ns
13 H Pulse Width (High) 90 70 ns
14 H Pulse Width (Low) 90 70 ns
15 I Cycle Time 394.4 315.6 ns
16 I Pulse Width (High) 190 150 ns
17 I Pulse Width (Low) 190 150 ns
18 J Cycle Time 788.8 631.2 ns
19 J Pulse Width (High) 385 305 ns
20 J Pulse Width (Low) 385 305 ns
21 SHIFT Cycle Time

(64x16 & 80x24 Mode) 98.6 78.9 ns
(32x16 & 40x24 Mode) 197.2 157.8 ns

22 SHIFT Pulse Width (Low) 30 30 ns
23 SHIFT t to LOADS> 0 27* 0 27* ns
24 LOADS> to SHIFT t 50• 50• ns
25 LOADS Pulse Width (Low) 70 98.6 70 78.9 ns
26 LOADS t to SHIFT t 50* 50• ns

0 27 LOADS Cycle Time
(64x16 & 80x24 Mode) 788.8 631.2 ns
(32x16 & 40x24 Model 1577.6 1262.4 ns

28 SHI FT t to LOAD t 5 5 ns
29 LOAD Pulse Width (Low) 40 30 ns
30 LOAD Cycle Time

(64x16 & 80x24 Mode) 788.8 631.2 ns
(32x16 & 40x24 Mode) 1577.6 1262.4 ns

31 LOAD t to CRTCLK > 0 27 0 27 ns
32 CRTCLK Cycle Time 788.8 631.2 ns
33 CRTCLK Pulse Width (High) 385 305 ns
34 CRTCLK Pulse Width (Low) 385 305 ns
35 CRTCLK t t to XADR7 t t 5 5 ns
36 XADR7 Cycle Time 788.8 631.2 ns
37 XADR7 Pulse Width (High) 385 305 ns
38 XADR7 Pulse Width (Low) 385 305 ns

•
Hardware 156

:r .,
a.
:i; .,
cil
~

01

"'

"
VCLK
10.1376MHz

DCLK

DOT*

H

I

J

MA.0'

SH IF·r•

LOADS*

LOAD*

CRTCLK

XADR7 *

~) _,
~~~ 

------;1-------------{18 20) "! ll~ ., 

,4--4-1 L......._J 

30 

I -
I· @ @ 

'~ 

3---1, .. ~32' 
r 

I 
3G) I • Q:?) I ~ 

VIDEO TIMING 

64 X 16 MODE 
80 X 24 MODE 



:i:: a 
i 
~ 

8:: 

VCLK 
10 .13 76MHz 

DCLK 

DOT* 

H 

I 

J 

MA.0' 

SH I E'T* 

LOADS* 

LOAD* 

CRTCLK 

XADR7* 

• 

l---{21)-1~~!~
LJ u LJ u LJ 

0 

LJ 

@ 

VIDEO TIMING 

32 X 16 MODE 
40 X 24 MODE 

7 _J 

w LJ 

I~ 



~--,~ ,-.-.,, -

4.1 

MAX. 

PIN SIGNAL CAPACITANCE 

• 23 PCLK 35 pf 

22 RS232CK 105 pf 

21 SHIFT* 35 pf 

XADR7* 35 pf 

19 CRTCLK 35 pf 

18 LOADS* 35 pf 

17 DOT* 35 pf 

16 LOAD* 35 pf 

.....---.. 
DCLK 35 pf \ 15 

..,I 
14 H 35 pf 

13 35 pf 

11 J 35 pf 

I 

Hardware 159 



ARRAY#: 4.2.1 

CIRCUIT NAME: Address Decode 

NO. OF PINS: 40 

MAX. CLOCK FREQ.: 4 MHz 

OPER. TEMP.: 0° C to 70° C 

OPERATING VOLTAGE & RANGE: 5 + 5% 

Hardware 160 

0 

• 



- MI 

II IOREQ 
RD 
WR 

MREQ 
RFSH 

DESPAGE 
ENPAGE 

SRCPAGE 
SELl 
SEL0' 

AlS 
Al4 
Al3 
Al2 
All -- Al,0' 

~ LPADD 

SIXTN 
MOD4P 

... • 

+sv --

-~ 

4,0' PINS USED 

4ef PIN CHIP 

4 .2 • .0' 

ADDRESS DECODE 

. 

Hardware 161 

IN* 

OUT* 
MRD* 
MWR* 

RASEN.0'* 

RASENl* 
MAPA15 
RAMBUSDIR 
RAMBUSEN* 
RAMRDEN/MCYCEN (RAMRDMCYC) 
RAMWREN/ROMB* 

BUSDIR* 
BUSEN* 

VIDEO* 

KEYBD* 
ROMCE*/ROMC* 

LPRQ* 

ROM*/ROMA* 
(I/Ol 



Ml 0 V @vEC 

IOREQ 0 @ IN* 

RD 0 @ OUT* 

WR G) @ MRD* 

MREQ ® @ MOD4P 

RFSH © @MWR* 

Al5 0) @ RASEN-0'* 

Al4 ® @ RASENI* 

Al3 ® @ MAPA15 

Al2 @ 4.2.1 @ RAMBUSDIR 

All @ @ RAMBUSEN* 

0 Al0' ·@ @ RAMRDEN/MCYCEN 

LPADD © @ RAMWREN/ROMB* 

LPRQ* ~ @ BUSDIR* 

DESPAGE @ @ BUSEN* 

ENPAGE @ @ SIXTN 

SRCPAGE@ 
/'""-

~ VIDEO* 

SELl @ @KEYBD* 

SEU @ @ ROMCE*/ROMC* 

GND @ (21) ROM* /ROMA* 
'-" 

Hardware 162 



SIGNAL NAME MODEL A MODE MODEL 4 MODE 

MDD4P "I"= +SV 110" = GND 

Ml Ml I Ml 
IOREO IOREQ I IOREQ - RD RD I RD I 

- WR WR I WR I 
MREO MREO I IOREO I 
RFSH RFSH I RFSH I 
DESPAGE DESPAGE DESPAGE 
ENPAGE ENPAGE ENPAGE 
SRCPAGE SRCPAGE I SRCPAGE I 
SEL1 SEL1 I SEL1 I 
SEL0 SEL0 I SEL0 I 
A15 A15 I A15 I 
A14 A14 I A14 I 
A13 A13 I A13 I 
A12 A12 I A12 I 
A11 A11 I A11 I 
A10 All I A10 I 
LPADD LPADD I LPADD 
SIXTN SIXTN I SIXTN I 

IN* IN* 0 IN* 0 
OUT* OUT* 0 OUT* 0 
MRD* MRD* 0 MRD* 0 
MWR* MWR* 0 MWR* 0 

,,--,, RASEN0* RASEN0* 0 RASEN0* 0 

~ 
RASEN1 * RASEN1 * 0 RASEN1 * 0 
MAPA15 MAPA15 0 MAPA15 0 
RAMBUSDIR RAMBUSDIR 0 RAMBUSDIR 0 
RAMBUSEN* RAMBUSEN* 0 RAMBUSEN* 0 
(RAMRDMCYC) RAM RDEN/MCYCEN RAMRDEN 0 MCYCEN 0 
RAM WREN/ROMS* RAMWREN 0 ROMB* 0 
BUSDIR* BUSDIR* 0 BUSDIR* 0 
BUSEN* BUSEN4P* 0 DATACNT* 0 
VIDEO* VIDE04P* 0 VIDE04* 0 
KEYBD* KEYBD4P* 0 KEYBD4* 0 
ROMCE* /ROMC* ROMCE* 0 ROMC* 0 
LPRO* LPRO* 0 LPRO* 0 
ROM*/ROMA* ROM* I ROMA* 0 

I = INPUT 
0 = OUTPUT 

Hardware 163 



:? 

SPECS 

PARAMETER MIN. TYP. MAX. UNITS 

1 IOREQ H * RD Hto IN H 35 ns 
2 IOREQ H * WR H to OUT H 35 ns 
3 RDHtoMRDH 35 ns 
4 WRHtoMWRH 35 ns 
5 A15 H to RASEN0 H 50 ns 
6 A15 Hto RASEN1 H 50 ns 
7 A15 H to MAPA15 H 50 ns 
8 RD -1-tto RAMBUSDIR H 35 ns 
9 M REQ H to RAMBUSEN H 35 ns 

10 A15-A10 tho RAMRDMCYC H 50 ns 
11 A15-A14 Hto RAMWREN H 50 ns 
12 MREQ H to ROMB H 35 ns 
13 IOREQ H to BUSDIR -1-t 35 ns 
14 RD Hto BUSDIR H 35 ns 
15 MREQ H to BUSEN H 50 ns 
16 MREQ H to VIDEO H 35 ns 
17 MREQ H to KEYBD H 35 ns 
18 MREQ Hto ROMCE H 35 ns 
19 MREQ H to ROMC H 35 ns 
20 MREQ H to LPRQ H 35 ns 
21 MREQ H to ROMA H 35 ns 
22 PCLK t .j, to PCLK .j, t 110 123 ns 
23 PCLK Cycle Time 246 ns 
24 PCLKttoMlt 106 ns 
25 PCLK -I-to MREQ t 91 ns 
26 A10-A15 tho MREQ t ns 

0 27 PCLK .j, to RD t 101 ns 
28 PCLK tto A10-A15 H 128 ns 
29 PCLK tto A10-A15 H 128 ns 
30 PCLK t to Ml .j, 136 ns 
31 PCLK t to MREQ .j, 91 ns 
32 MRE0-1-toMREOt 110 ns 
33 PCLK t to RD .j, 91 ns 
34 PCLK t to RFSH t 136 ns 
35 RFSH t.l, to RASEN 0 or RASENl H 35 ns 
36 PCLK-l-toMRE0-1- 91 ns 
37 MREQ Pulse Width (High) 220 126 ns 
38 PCLK t to RFSH .j, 
39 A1-A9 Hto LPADD H 30 ns 
40 PCLK-1-toWRtt 86 ns 
41 PCLK -I-to RD .j, 91 ns 
42 Control Lines H to Affected Signals t .j, 35 ns 
43 A0-A15 tho IOREQ t 200 ns 
44 PCLK t to IOREQ t 81 ns 
45 PCLK tto RD t 91 ns 
46 PCLK t to WR t 71 ns 

• 
Hardware 164 



:c 

I 
Q) 

(D -8l 

I 

Tl 

PCLK* - 122 --
-(iii' '::;: 

Al0'-Al5 

--<& 
Ml 

r@ ~ i----c-. 

MREQ 

RD 

RFSH 

MRD 

RASEt-<,0'* 

RASENl* 

MAPA15 

RAMBUSD 

---

-
IR 

~· 
CYC) ---

RAMBllSE 

(RAMRDMi 
RAMRDEN 
MCYCEN 

I 

BUSDlR* 

BUSEN* 

V [[)EO*, 
ROMCE*, LPRQ 

D*, 
* 

~ 

-

~ 

H7J 
-< 

-
-(lo) 

-< 

---
ROMA*, ROMB*, ROMC* 

T2 

I I 
I r23' 

-{3) 

Ha) 

r--0 

--0 

~ 
-,-(.16, 17, 18, 20) 

l~J -~ 
Ml CYCLE 

T3 T4 

I I I 
.(29)-. (28}-. -

--- .. --0!) 

(31)-- ·(8)- --- --Q§) 

- i--~ 37 

- .. ..(34) - ~ 

- ---0) 

--- ~ 
..... ~ --- ~ 

1 ... -{_z) 

--- ·~ 
--- -(9) 

f-4" r@ 
..... -14) 

--- ~ 
...... ~16,17,18,20) 



:i: ., 
a 
::; ., 
(D 
~ 

"' "' 

PCLK* 

AL0'-Al5 

LPADD 

MREQ 

RD 

WR 

MRD* 

MWR* 

RASEN.ef, RASENl, 
VIDEO*, KEYBD*, 

MAPA15, 
ROMCE*, 

READ OR WRITE CYCLE 

Tl T2 T3 

I, (2 3 

3 

4 

RAMBUSDIR, RAMBUSEN*, RAMRDMCYC, BUSDIR*, BUSEN*, 
LPRQ, ROMA*, ROMB*, ROMC* - Refer to Ml Cycle 

CONTROL LINES 

DESPAGE, ENPAGE, ;;.J ~ 
i:i!'"'· ""'. <•C f c,C f 
RASENO, RASENl, 
MAPA15, RAMBUSDIR, 
RAMBUSEN*, RAMRDMCYC, 
RAMWRE.N, ROMB*, 
BUSEN*, VIDEO*, 
J<EYBD*, ROMCE*, 
ROMC*, LPRQ*, 
ROMA* 

• 0 



- l_,) -

1/0 CYCLE 

Tl T2 TW T3 

PCLK* 

A-6-Al5 

' I 

" ' \ I I I I \ 
~ ' {2~ 

r-

:c 
IOREQ ., 

~ 

i ., RD 
m 

~- -. (43) 

~ -
~ -

~ 

"' 
WR __, 

(1)- - Q)- --
IN* 

(2)- - @- -OUT* 



DC CHARACTERISTICS (ALL PINS) (f - 70° C 

PARAMETER MIN. TYP. MAX. UNITS --
Input Voltage Level (High) 2.0 V 

Input Voltage Level (Low) .8 V 

Output Voltage Level (High) 2.7 3.5 V 

Output Voltage Level (Low) .35 .5 V 

(ALL PINS EXCEPT OUT*, RAMRDEN/MCYCEN) 

Input Current Level (High) 29 µa 

Input Current Level (Low) -.4 ma 

Output Current Level (High) -200 µa 

Output Current Level (Low) 4 ma 

(OUT*, RAMRDEN/MCYCEN) 

Output Current Level (High) -400 µa 

Output Current Level (Low) 8 ma 

0 

• 
Hardware 168 



MAX. 
PIN SIGNAL CAPACITANCE 

39 IN* 35 pf 

• 38 OUT* 35 pf 

37 MRD* 35 pf 

35 MWR* 128 pf 

34 RASEN0* 35 pf 

33 RASEN1 * 35 pf 

32 MAPA15 35 pf 

31 RAMBUSDIR 35 pf 

30 RAMBUSEN* 35 pf 

29 RAMRDEN/MCYCEN 35 pf 

28 RAMWREN/ROM8* 35 pf 

27 BUSDIR* 35 pt 

26 BUSEN* 35 pt 

24 VIDEO* 35 pf 

23 KEYBD* 35 pf 

\ 22 ROMCE*/ROMC* 35 pt 

...I (OUTPUT) 21 ROMA* 35 pf 

14 LPRO* 35 pt 

a. • 
Hardware 169 



ARRAY#: 4.3.0 

CIRCUIT NAME: Video Support 

NO. OF PINS: 40 

MAX. CLOCK FREQ.: 12.672 MHz 

OPER. TEMP.: 0° C to 70° C 

OPERATINGVOLTAGE&RANGE: 5+ 5% 

Hardware 170 

0 



SRD.Q' 

SRDl -
SRD2 
SRD3 
SRD4 --
SRDS 
SRD6 -
SRD7 -

DISPEN 
RA2 -
RA3 -

DLYCHAR -

DLYCHAR* ----
-I 

CGA3 
CGA4 

-
. 

CGAS 
CGA6 -

CGA7 -

CGA8 -
CGA9 

CGAl.0' -

+SV -~ 

- .... 

39 PINS USED 

40 PIN CHIP 

4. 3 .d 

VIDEO SUPPORT 

Hardware 171 

-

-
-

-
--
-

-

-
-
--
--

VOUT* 

INVERSE 
ENALTSET 

LOAD* 
LOADS* 
SHIFT* 

ENGRAF 
GRAFVID 
CL166* 

CGD..0' 
CGDl 
CGD2 
CGD3 
CGD4 
CGDS 
CGD6 
CGD7 



CGA7 1 V 40 +5v 

CGA8 2 39 CGA6 

CGA9 3 38 CGA5 

CGAL0'. 4 37 CGA4 -
SRD7 5 36 CGA3 

SRD6 6 35 RA3 

SRD5 7 34 RA2 

SRD4 8 33 CGD7 

SRD3 9 32 CGD6 

SRD2 10 31 CGD5 

SRDl 11 30 CGD4 

SRD0 12 29 CGD3 

DLYCHAR* 13 28 CGD2 

DLYCHAR 14 27 CGDl 0 
DISPEN 15 26 CGD0 

CL166 * 16 25 INVERSE 

ENGRAF 17 24 ENALTSET 

GRAFVID 18 23 LOAD* 

VOUT * 19 22 LOADS* 

GND 20 21 SHIFT* 

-
Hardware 172 



SPECS 

PARAMETER MIN. TVP. MAX. UNITS 

- 1 •• SRD0-SRD7 H to LOAD t 61 ns 

- 2· Inputs D0-D7 of LS273 t ,I, to LOAD t 2t ns 
3 LOAD t to CGA3-CGA 10 t t • .. ns 
4 RA2, RA3 H to Outputs of LS153 H 0 38 ns 
5 Inputs CGA3-CGA10of LS153 H to Outputs H 0 31 ns 
6 DL VG RAPH IC j, to Outputs of LS244 t j, • 31 ns 
7 D L VG RAPH IC t to Outputs of LS244 Tristate • 31 ns 
8 ENAL TSET t j, to CGA9 t j, • 36 ns 
9 INVERSE tho Inputs D7 of LS273 t-1, • 35 ns 

10 INVERSE t j, to INVDISPEN, CHAR t ,I, • 4' ns 
11 INVERSE t j, to Input to 51 t j, • 2f ns 
12 SRD6 H to CHAR H • 4' ns 
13 DISPEN t ,I, to Input D0 of LS175 H • 2f ns 
14 DISPEN H to INVDISPEN H • 41 ns 
15 ENG RAF t,I, to INVDISPEN H • 41 ns 
16 ENG RAF H to Inputs of 51 H • 2f ns 
17 GRAFVID Hto lnputof51 H 0 5 ns 
20·· CGD0-CGD7 t ,I, to LOADS ,I, & SHIFT t 100 ns 
21 RA3 H to DLVBLANK H 0 27 5tl ns 
22 LOAD t to DL VBLANK H 0 27 541 ns 
23** LOADS j, to SHIFT 1 50 ns 
24* SHFT/LD-!, to SHIFT t 30 ns 

,,...,.___ 25 CL166 H to OH H • 30 ns 

.) 26* LOAD t to SHIFT t ± 5 ns 
271 LOAD t to VIDE02 H = SHIFT t to VIDE01 t,I, ±5 ns 
28 GRAFVID H to VIDE02 H • 15 ns 
29 VIDE02 t.j,, VIDE01 Hto VOUT H • 2i ns 
30 ENG RAF H to VIDE02 H • 15 ns 
31 DL VCHAR* t to CGD0-CGD7 Tristate 150 ns 
32 CRTCLK j, to DISPEN 300 ns 

1 The delay from LOAD t to VIDE02 t j, should equal the delay from SHI FT t to VIDE01 t t. 

• Specs required for TLL components-can be changed to meet the setup & hold time specs of array logic. 

**Specs provided are for reference, timing is from external logic. 

' • 
Hardware 173 



::i: 

I --.i 
~ 

CRTCLK 

SRA0'-SRA1.0'CRT~ XcRTC ADDX XcRTCADD XL_-~XcRTC ADDX XcR'rc ;;oDX X C"'"'r f\DDX'----

SRD,0'-SRD7 

LOAD* 

D7\X X 
~ 

D7 t 

CGA3-CGA1.0' • 

CGD.0'-CGD7 

SHJFf* 

titiF'l'/LO 

!Nvc.kSb 

@ 
lNVDlSPEN xxrxmxxYJJJ.JJJJ 

:)LY l ,VD ISP 

DLYll Ld I IWDIS p _________ ___, 

VIOEO 2 

VIDEO 1 

VOUT* 

00'1'* OR DCLK 

\,ou·r 

• 

X D7 \X 
~ 

X' 
" 

D7 ♦ X D7! X D7 ♦ 

XXXXlX7JX7 xxxxxxxxxx wx 

xxxxxxxxxxxxxxx XYJJJXXXXXXXMXX, xmxx. 

INVERSE VIDEO TIMING 

0 ~ 



f -ul 

w t) _, 

CRTCL~ ~ L 
SRA0'-SRAL0' CRTC AD~X XcRTC ADDx=: :==.,xcRTC ADDX~ __ __,XcRTC ADDX ____ XCRTC ,,oox ____ xcRTC ADDX = 
SRD.ff-SRD7 

LOAD* 

CGA3-CGA1,0' 

CGD0'-CGD7 

SHIFT* 

LOADS* 

DISPEN 

DLYDISPEN 

DLYBLANK 

SHFT/LD 

VIDEO 1 

-----+--''xxxxxxxxm , , I xx~ 'µxxxxx 

X X X ! ! 

ITXX'/JJJJJ. xxxxxxxxxxx: xx 

BLANKING 



CRTCLK 

SRA,P'-SRAl.0" X~ ______ X CRTC ADD X X CRTC ADD X X 
VALID 

SRD.0'-SRD7~ DATA ffi ( m ~ 
VALID ~--= VALID 

DATA XX) ( XX) ( DATA XX) ( XX) 

LOAD* 

CHAR ,xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx1 ''XXXXXXXXXlXXXXXXXXXXXXXXXXXXXXXXXXXXXXX "ff.:ti-XXXXXXXXXXXXXXXXXXXXXX X 

J: DLYCHAR* 
!l> a. 
:I, DLYGRAPHIC* 
!l> (DLYCHAR) iil - CGD,8'-CGD7 ..., 
"' 

Y.'fJ.XXXXXXXXXXXXXXXXXXi 

D.0'-D 7 FROM 
LS244 

VALID DATA 

SHIFT* 

SHFT/LO 

VIDEO l 

DLYCHAR* & DLYGRAPHIC* CONTROL 

,• .. 0 ~ 



::c ., 
a. 
:!: ., 
;;; 
~ 

" " 

I 

GRAFVID 

ENGRAF 

VIDE02 

VIDEO 1 

CL166* 

VOUT* 

DOT* OR 
DCLK 

VOUT 

@ 

} D D m 

l_) 

D D D D 
GRAFVID, ENGRAF, CL166*, VIDEOl 

RELATIONSHIP 

II) 

□ D D 



ENAL'rSE'I' 

CGAl.0' 

ENAL·rsET * CGAlO 

Q6 

~t ©-ih :c ., 
a. 

I I I I 
~ 

7 I I I ., 
CGA9 al -.... 

0) 

ENALTSET CGAl0 Q6 CGA9 

,0' fl g 0' 
g ,0' I I 

,0' I ,0' ,0' 

,0' I I I 

I ,0' ,0' ,0' 

I ~ I I 
I I ,0" ,0' 
I I I H 

ENALTSET CONTROL 

,, 
0 ~ 



DC CHARACTERISTICS {ALL PINS) 0° - 70° C 

PARAMETER MIN. TYP. MAX. UNITS 

............. 

- Input Voltage Level {High) 2.0 V 

Input Voltage Level {Low) .8 V 

Output Voltage Level {High) 2.7 3.5 V 

Output Voltage Level (Low) .35 .5 V 

Input Current Level (High) 2t 114 

Input Current Level (Low) -.4 ma 

Output Current Level (High) -200 114 

Output Current Level ( Low) 4 ma 

Hardware 179 



4.3 

MAX. 
PIN SIGNAL CAPACITANCE 

4 CGA10 35 pf 

3 CGA9 35 pf 

2 CGA8 35 pf 

1 CGA7 35 pf 

39 CGA6 35 pf 

38 CGA5 35 pf 

37 CGA4 35 pf 

36 CGA3 35 pf 

13 DLYCHAR* 35 pf 

14 DLYCHAR 35 pf 

19 VOUT* 35 pf 

0 

Hardware 180 



--

., 

ARRAY#: 4.4.0 

CIRCUIT NAME: Floppy Disk Support 

NO. OF PINS: 24 

MAX. CLOCK FREQ.: 8 MHz 

MAX. PROP. DELAY THROUGHPUT: 75 ns 

OPER. TEMP: 0° C to 70° C 

OPERATING VOLTAGE & RANGE: 5 V + 5% 

Hardware 181 



D-ff 

Dl 
02 
D3 
05 
06 
07 

RESET* 
WRNMI* 
RONMI* 
ORVSEL* 

INTRQ 
DRQ 
WG 

-

-

-
-
--
-
-
-

-

4.4 . ..6' 

+SV 
T24 

-

XTAL-ff 
_L 
c:::::J -,-

XTALl 

12 

- '-

24 PIN CHIP 

FLOPPY DISK SUPPORT 

Hardware 182 

8MHZ 
ENP/ROY 

MOTORON 
EXTSEL 

NMI 

WAIT 

16MHZ 
XTAL 

-

0 

-



INTRQ 0 V @) vcc 

DRQ @ @ XTALRf 

ENP/RDY Q) @ XTALl 

WG 0 @ MOTORON 

DO ® @ EXTSEL 

Dl @ (0 NMI 

D2 0 4.4 @ WAIT 

D3 ® 0 WRNMI* 

J D5 ® ~ RDNMI* 

D6 @ @) DRVSEL* 

D7 @ ~ 8MHZ 

GND @ © RESET* 

• 
Hardware 183 



SPEC. 
PARAMETER MIN TYP MAX UNITS 

1. Data Setup Time 560 Ill 

2. Data Hold Time 50 ,,. 
3. Reset* Pulse Width 70 100 Pl 
4. Reset* -l- to Wait or NMI t 75 ,,. 
5. WRNMI * t to 74LS74 O's Outputs t t 75 ,,. 
6, ORVSEL • t to MOTORON t 75 ,,. 

*7, MOTORON Pulse Width (Low) 3 4 5 -. 
8, ORVSEL * t to WAIT t 75 "' 9. ORVSEL * t to CLRWAIT t 500 1100 ,,. 

10. ORVSEL* t to WAITIMOUT t 1024 1050 Pl 
11. ORVSEL * t to ENP/ROY tl- 75 ,,. 
12. ORVSEL • tto EXTSEL H 75 ,,. 
13. INTRO tor ORO t to WAIT t 75 ,,. 
14. INTRO tor ORO t to CLRWAIT t 75 111 
15, INTRO tor ORO t to WAITIMOUT t 75 ,,. 
16. 8 MHZ Cycle Time 125 ns 
17. 8 MHZ Pulse Width (Low) 50 62.5 ,,. 
18. 8 MHZ Pulse Width (High) 50 62.6 ,,. 
19, WG H to ENP/ROY H 75 .. 
20. RONMI* ho 00, 05-07 Valid 76 ,,. 
21. RDMMI* t to 00, 05-07 Tristate 0 76 .. 
,. MOTORON Circuit Must Simulate a Retriggerable Monostable Multivibrator (74LS123) 

0 

Hardware 184 



• \.,,) IIJ 

0,9'-03,05-D7 

1 H2) 
DRVSEL*, 
WRNMI* 

3 
RESET • 

' , ... 4 }-4 
, , 

WAIT 
:r NMI 
Ol a. 
~ ®- -Ol 
al 74LS74 Q'S 
~ 

Cl) 

"' ©-- \ 7 J , 
MOTORON ' ' 

~ HG)... 
~ -WAIT 

9 Hi4}--.. 
CLRWAIT ' , 

, ' ~ 0 
WAITIMOUT 

' ' , 

ENP/RDY 
@- .__ 

EXTSEL ~ 
.___ 

INTRQ 



16MHZ 

8MHZ 
~----1----_- © '-----1~ .-----, ~.__..~~ ,---,.______. 

4MHZ 

2MHZ 

J: 

"' a. 

~ s ~ 
oj 

:i; 

"' ~ (!) 

t - WG @-, 
~ 

a, 
0) 

ENP/RDY 

RDNMI* 

D.0',D5-D7 @ 

D1-D4 -------------------------TRISTATED 

' 0 I) 



CAPACITANCE LOAD 

OUTPUT CAPACITANCE MAX. 

-.. D0 80 pf 

• D5 80 pf 

D6 80 pf 

D7 80 pf 

8MHZ 15 pf 

ENP/RDY 15 pf 

MOTORON 15 pf 

EXTSEL 15 pf 

NMI 15 pf 

) WAIT 15 pf 

Hardware 187 



PARAMETER 

Input Voltage Level (High} 
Input Voltage Level (Low} 
Output Voltage Level (High} 
Output Voltage Level (Low} 

Input Current Level (High} 
Input Current Level (Low} 
Output Current Level (High} 
Output Current Level (Low} 

Output Current Level (High} 
Output Current Level (Low} 

Input Current Level (High} 
Input Current Level (Low} 
Output Current Level (High} 
Output Current Level (Low} 

DC CHARACTERISTICS 0° - 70° C 

(ALL PINS} 

MIN. TYP. 

2.0 

2.7 3.5 
.35 

(ALL PINS EXCEPT MOTORON & D0, D5-D7} 

-160 
3.2 

MOTORON 

-240 
4.8 

D0, D5-D7 

-280 
5.6 

Hardware 188 

MAX. UNITS 

V 
.8 V 

V 
.5 V 

20 ,,. 
-.4 -,,. 

ma 

,. 
11111 

0 29 ,. 
-.4 11111 .,. -



) 

= 

ARRAY#: 4.5.0 

CIRCUIT NAME: RS232 Support 

NO. OF PINS: 40 

OPER. TEMP.: 0° C to 70° C 

OPER. VOLTAGE: 5V + 5% 

Hardware 189 



vcc 

I --
AO 1 9 RTS 

--
Al 2 10 DTR 

--
RDINTSTATUS 3 7 SRTS 

WRINTMASKREG 4 8 ENTD 

RS232IN 5 21 OUTE8 

RS2320UT 6 38 OUTE9 

--
CTS 14 11 OUTEA 

--
DSR 15 

4.5.0 
23 OUTEB 

-
CD 16 40 PIN 18 INEB 

-
RI 20 

- --
RD 13 37 INT 0 
PE 26 

FE 25 27 BDf.r 

DE 24 28 B01 

THRE 22 29 BD2 

DR 19 30 B03 

RTCIN 36 31 B04 

XINT 35 32 B05 

-
WR 39 33 BD6 

N. C • ....!..!_ 34 B07 

1~ 

Hardware 190 



- u -

D. C. CHARACTERISTICS 0' - 70' C 

MIN. TVP. MAX. UNITS 

Input Voltage (High) V1H 2.0 V 

Input Voltage (Low) V1L .8 V 

Output Voltage (High) VoH 2.7 3.5 V 

Output Voltage (Low) VoL .35 .5 V 

~ 

I 
al 

Input Current (High) l1H 20 µa 

Input Current (Low) l1L -.4 ma 

-<D -
Output Current (High) loH (all except INT, INEB & BO) 120 µa 

INT (O.C. or 0.0.) 120 µa 
BO BUS 280 µa 
INEB 120 µa 

Output Cumnt (Low) loL (1II except INT, INEB, & BO) -3.2 ma 
INT, (0. C. or 0.0.) -8.0 ma 
BO BUS -5.6 ma 
INEB -4.4 ma 



PROP, DELAY & TIMING MIN. TYP. MAX. 

Data In* to BD Bus 75 

RS232 IN t to BD Bus 75 

BD Bus Set Up to WR t 75 

BD Bus Hold Time From WR t 60 

J: 
A0, Al to INEB, OUTEB, OUTE9, OUTEA, OUTEB 75 

I RS232IN, RS2320UT t to INEB OUTEB, OUTE9, OUTEA, OUTEB 75 

-is WR t to OUT EB, OUTE9, OUTEA, OUTEB (WOULD LIKE 18) 32 

RS2320UT + to RTS, DTR, ENTD, SRTS 75 

PE, FE, DE, THRE, DR, RTCIN, XINT to INT+ 75 

All Delay In NSEC. 

*Data in is any of the following inputs: PE, FE, DE, THRE, DR, RTCIN, XINT, CTS, DSR, CD, RI & RD. 

CouT Max= 100 pf for BD Bus, INT, & INEB; all others CouT Max= 50 pf. 

(' 0 t) 



AO-Al J VALID : X l i:= Tl T2 

WRINTIMASKREG, I RDINTSTATUS, t RS232IN, RS232OUT 

WR 

T7 

Tl~ 
,......,__ 

' T4 TS ' _.I 

SOBUS VALID {OUT) 

TS Tl2 -rT9 T6 Tll Tll'l 

SOBUS 
{IN) VALID 

Tl3 ~ r-Tl4 

OUTXX I:: VALID C OUTXX 

., 

Hardware 193 



• 
MIN. TYP. MAX. 

t1 168 

t2 168 

t3 -34 0 

t4 -34 0 

t5 75 

ts 75 

t7 34 

ts 60 

tg 24 250 0 
t10 24 250 

t11 75 

t12 75 

t13 75 

t14 32 (Need 18) 

All Timing in NSEC. 

Hardware 194 



j 

) 

• 

Index 
Subject Page Subject Page 

Address decoding 
4 ................................. 3 
4 Gate Array . . . . . . . . . . . . . . . . . . . .. . 26 
4P ............................... 60 
4P Gate Array . .. . .. .. .. .. .. .. . .. . 1 05 

Baud 
4 ................................ 15 
4 Gate Array ...................... 51 
4P ............................... 98 
4P Gate Array . . . . . . . . . . . . . . . . . . . . 142 

Baud rate generator 
4 ................................ 15 
4 Gate Array ...................... 51 
4P ............................ 57, 98 
4P Gate Array . . . . . . . . . . . . . . . . . . . . 142 

Buffering 
4 Gate Array .. . .. .. . .. . . . . .. . .. . .. 48 
4P ............................... 95 
4P Gate Array . . . . . . . . . . . . . . . . . . . . 140 

CASIN* 
4 .............................. 3, 17 
4 Gate Array .. .. . . . . .. . . . . . . . .. .. . 54 

CASOUT* 
4 .............................. 3, 16 
4 Gate Array .. . . . . . . .. . . . .. . .. .. .. 54 

Cassette circuitry 
4 ................................. 9 
4 Gate Array . . . . . . . . . . . . . . . . . . . . . . 46 

Clock 
4 ................................. 3 
4 Gate Array . . . . . . . . . . . . . . . . . . . . . . 21 
4P ............................... 57 
4P Gate Array . . . . . . . . . . . . . . . . . . . . 103 

Compensated write data 
4 ................................ 17 
4 Gate Array . . . . . . . . . . . . . . . . . . . . . . 4 7 
4P ............................... 96 
4P Gate Array .................... 141 

Controller, CRT 
4 ................................. 7 
4 Gate Array ............... 21, 28, 36 
4P ........................ 57, 60, 85 
4P Gate Array . . . . . . . . . . . 103, 105, 130 

Controller, Floppy Disk 
4 Gate Array .. . .. . . .. . . .. .. .. . . . .. 48 
4P ............................... 93 
4P Gate Array . . . . . . . . . . . . . . . . . . . . 138 

CPU Board 
4 ................................. 3 
4 Gate Array ...................... 21 
4P ............................... 57 
4P Gate Array . . . . . . . . . . .. . . . . . . . . 103 

CRT 
4 ............................... 7, 9 
4 Gate Array ............... 21, 28, 36 
4P . . . . . . . . . . . . . . . . . . . . . . . . 57, 60, 85 
4P Gate Array . . . . . . . . . . . 103, 105, 130 

Decoding, address 
4 ................................. 3 
4 Gate Array .. .. .. .. . . . .. .. .. .. .. . 28 
4P ............................... 60 
4P Gate Array . . . . . . . . . . . . . . . . . . . . 105 

Disk Drive 
4 Gate Array .. .. . .. . .. . .. .. . .. .. .. 48 
4P ............................... 93 
4P Gate Array . . . .. . . .. .. .. .. . .. .. 142 

Drive select 
4 ................................ 17 
4 Gate Array ................... 47, 48 
4P ............................ 93, 95 
4P Gate Array .. .. . . . . . . . . . .. . . . .. 142 

DRVSEL* 
4 ................................ 17 
4 Gate Array ...................... 47 
4P ............................... 95 
4P Gate Array . . . . . . . . . . . . . . . . . . . . 140 

FDC Controller 
4 Gate Array ................... 47, 48 
4P ............................... 93 
4P Gate Array . . . . . . . .. .. . . . . . . . . . 138 

1/0 bus 
4 ................................ 14 
4 Gate Array .. .. .. . .. . .. . .. .. .. . .. 44 
4P ............................... 91 
4P Gate Array .. . .. .. .. .. . .. .. .. .. 136 

Interrupts 
4 Gate Array .. . . . . . . . . . . . . . . . . . . . . 48 
4P ............................... 95 
4P Gate Array . . . . . . . . . . . . . . . . . . . . 140 

Keyboard 
4 ................................. 7 
4 Gate Array .. .. . .. . .. .. . .. . .. .. . . 41 
4P ............................... 87 
4P Gate Array . .. . .. .. .. .. . .. . .. .. 132 

Memory address decoding 
4 ................................. 6 
4 Gate Array . . . . . . . . . . . . . . . . . . . . . . 27 
4P ............................... 60 
4P Gate Array . . . . .. . .. . . . . . .. . . . . 105 

MODOUT 
4 ................................ 16 
4P ............................... 82 
4P Gate Array . . . . . . . . . . . . . . . . . . . . 127 



Index 
Subject Page Subject Page 

NMI logic 
4 Gate Array . . . . . . . . . . . . . . . . . . . . . . 48 
4P ............................... 95 
4P Gate Array .................... 140 

RS-232 Board 
4 Gate Array ...................... 51 
4P ............................... 98 
4P Gate Array . . . . . . . . . . . . . . . . . . . . 142 • Oscillator Sound 

4 ............................... 3, 5 4 ................................ 10 
PAL Circuits 4 Gate Array . . . . . . . . . . . . . . . . . . . . . . 44 

4 ................................ 15 4P ............................... 91 
Port Address decoding 4P Gate Array . . . . . . . . . . . . . . . . . . . . 136 

4 ................................ 15 Timing, CPU 
4P ............................... 81 4 ................................. 3 
4P Gate Array . . . . . . . . . . . . . . . . . . . . 126 4 Gate Array . . . . . . . . . . . . . . . . . . . . . . 21 

Port bit map 4P ............................... 57 
4 .............................. 6, 16 4P Gate Array . . . . . . . . . . . . . . . . . . . . 103 
4 Gate Array . . . . . . . . . . . . . . . . . . . . . . 37 Video Controller 
4P ............................... 81 4 ................................. 7 
4P Gate Array . . . . . . . . . . . . . . . . . . . . 126 4 Gate Array . . . . . . . . . . . . . . . 21, 28, 36 

Precompensation, write 4P ........................ 57, 60, 85 
4 Gate Array ...................... 47 4P Gate Array ........... 103, 105, 130 
4P ............................... 96 Video Monitor 
4P Gate Array .................... 141 4 ............................... 7, 9 

Printer status 4 Gate Array . . . . . . . . . . . . . . . 21, 28, 36 
4 ................................. 9 4P ........................ 57, 60, 85 
4 Gate Array . . . . . . . . . . . . . . . . . . . . . . 41 4P Gate Array ........... 103, 105, 130 
4P ............................... 87 
4P Gate Array . . . . . . . . . . . . . . . . . . . . 132 

RAM 

Wait State 
4 Gate Array . . . . . . . . . . . . . . . . . . . . . . 47 
4P ............................... 95 0 

4 ............................... 7, 8 4P Gate Array .................... 140 
4 Gate Array ................... 36, 39 WRINTMASKREG* 
4P ............................ 71-84 4 ................................ 16 
4P Gate Array . . . . . . . . . . . . . . . . 11 6-129 4 Gate Array . . . . . . . . . . . . . . . . . . . . . . 48 

RDINSTATUS* 4P ............................... 83 
4 ................................ 16 4P Gate Array . . . . . . . . . . . . . . . . . . . . 128 
4 Gate Array . . . . . . . . . . . . . . . . . . . . . . 48 Write Precompensation 
4P ............................... 83 4 Gate Array ...................... 47 
4P Gate Array . . . . . . . . . . . . . . . . . . . . 128 4P ............................... 96 

RDNMISTATUS* 4P Gate Array .................... 141 
4 ................................ 16 WRNMIMASKREG* 
4 Gate Array . . . . . . . . . . . . . . . . . . . . . . 48 4 ................................ 16 
4P ............................... 83 4 Gate Array . . . . . . . . . . . . . . . . . . . . . . 48 
4P Gate Array . . . . . . . . . . . . . . . . . . . . 128 4P ............................... 83 

Real Time Clock 4P Gate Array . . . . . . . . . . . . . . . . . . . . 128 
4 ................................. 9 
4 Gate Array ...................... 41 
4P ............................... 87 
4P Gate Array .................... 132 

ROM 
4 ................................. 7 
4 Gate Array . . . . . . . . . . . . . . . . . . . . . . 36 
4P ............................... 60 
4P Gate Array . . . . . . . . . . . . . . . . . . . . 105 



j 

) 

• 

M MOTOROLA 

SEMICONDUCTORS 
3501 ED BLUESTEIN BLVD AUSTIN. TEXAS 78721 

Advance Information 

CRT CONTROLLER (CRTC) 

The MC6835 is a ROM based CRT Controller which interfaces an 
MPU system to a raster scan CRT display. It is intended for use in MPU 
based controllers for CAT terminals in stand•alone or cluster configura
tions. The MC6835 supports two selectable mask programmed screen 
formats using the program select input (PROGL 

The CRTC is optimized for the hardware/software balance required 
for maximum flexibility. All keyboard functions, reads, writes, cursor 
movements, scrolling, and editing are under processor control. The 
mask programmed registers of the CRTC are programmed to control 
the video format and timing. 

• Cost Effective ROM Based CRTC Which Supports Two Screen 
Formats 

• Useful in Monochrome or Color CRT Applications 
• Applications Include ''Glass-Teletype,'' Smart, Programmable, Intel

ligent CRT Terminals; Video Games; Information Displays 

• Alphanumeric, Semigraphic, and Full Graphic Capability 

• Timing May Be Generated for Almost Any Alphanumeric Screen 
Format, e.g., 80x24, 72x64, 132x20 

e Single + 5 Volt Supply 

• M68CX) Compatible Bus Interface 
• TTL-Compatible Inputs and Outputs 

• Start Address Register Provides Hardware Scroll (By Page, Line, or 
Character) 

• Programmable Cursor Register Allows Control of Cursor Position 
• Refresh (Screen) Memory May Be Multiplexed Between the CRTC 

and the MPU Thus Removing the Requirements for Line Buffers or 
External OMA Devices 

• Mask Programmable Interlace or Non-Interlace Scan Modes 

• 14-Bit Refresh Address Allows Up to 16K of Refresh Memory 
for Use in Character or Semigraphic Displays 

• 5-Bit Row Address Allows up to 32 Scan-Line Character Blocks 

• By Utilizing Both the Refresh Addresses and the Row Addresses, 
a 512K Address Space is Available for Use in Graphics Systems 

• Refresh Addresses are Provided During Retrace, Allowing the CRTC 
to provide Row Addresses to Refresh Dynamic RAMs 

e Pin Compatible with the MC6845. The MC6845 May Be Used as a 
Prototype Part to Emulate the MC6835. 

MAXIMUM RATINGS 

Rating Symbol Value Unit 
Supply Voltage Vee· -0.3to +7.0 
Input Voltage Vin• -0.3 to + 7.0 
Operating Temperature Range 

MC6835, MC68A35, MC68B36 TA Oto +70 
MC6835e, MC68A35C, MC68835C -50to+85 

Storage Temperature Range Tstg -55 to+ 150 

·with respect to GND (V55l. 

Th,s document contains 1nformat1on 011 a new product Spec1f1cat1011s arid inforrnat,011 herem 
are sub1ect to change without 11ot1ce 

V 

V 

'C 

'C 

MC6835 

MOS 
(HIGH-DENSITY, N-CHANNEL, 

SILICON-GATE DEPLETION LOAD! 

MASK PROGRAMMED 
CRT CONTROLLER 

(CRTC) 

L SUFFIX 

CASE 715 

S SUFFIX 
CEROIP PACKAGE 

CASE 734 

P SUFFIX 
PLASTIC PACKAGE 

CASE 711 

PIN ASSIGNMENT 

GNO ,. 40 VS 

39 HS 

38 RAO 

37 RA1 

RA2 

RAJ 

RA4 

DO 

01 

02 

03 

04 

M 

06 

07 

MA13 17 

DE 18 

CURSOR 19 

Vee 20 21 

©MOTOROLA INC., 1964 ADl-861-Rl 



j 

I 

MC6835 

DC ELECTRICAL CHARACTERISTICS iVcc = 5 0 Vdc ± 5% V55 = 0 TA =0 to 70°C unless otherw,se notedl !Reference Figures 2 4) 
Characteristic Symbol Min 

1nput High Voltage VtH 20 

Input low Voltage v,, -0 3 

tnput Leakage Current 1,n -
H1 Z (Off State) Input Current tVcc = 5 25 VI lVm=O 4 to 2 4 VI ITSI -10 

Output High Voltage 
2 4 

Oload = - 100 l'AI 

Output Low Voltage U1oad = 1 6 mAJ VOL -
Internal Power 01ss1pat1on (Measured at TA= 0°CJ Po -
Input Capacitance 00-07 

C,n -
All Others -

Output Capacitance All Ou1pu1s Cout -

BUS TIMING CHARACTERISTICS !Reference Figures 2 and 3l 
ldent 

Number Charactenst1cs 
Symbol 

1 Cycle Time 1cvc 
2 Pulsp Width E Low PWEL 

3 Pulse Width, E High PWEH 
4 Clock Trans1t1on Time Ir, If 

9 Address Hold Time !RS) 'AH 
13 AS Setup 8elore E 1AS 

" Wand CS Setup Before E >cs 
15 Hold Time for Wand CS 'CH 
21 Wnte Data Hold Time Required 1DHW 
31 Peripheral Input Data Setup 1DSW 

FIGURE 2 - MC6835 BUS TIMING 

NOTES 

~-H@ 
-+i-,._ 

1 Voltage levels shown are VL:SO 4 V, VH2:2 4 V unless otherwise noted 

2 Measurement points shown are O 8 V and 2 0 V unless otherwise noted 

MC6835 MC68A35 
M,n Max Mm Ma, 
1 0 10 0 67 10 

430 - 280 -
450 - 280 -
- 25 - 25 

10 - 10 -
80 - 60 -
80 - 80 -
10 - 10 -
10 - 10 -

165 - 80 -

@ MOTOROLA Semiconductor Products Inc. 

3 

Typ Max Unit 

- Vee V 

- 08 V 

0 1 25 µA 
- 10 µA 

30 - V 

03 04 V 

150 300 mW 

- 12 5 
pF - 10 

- 10 pF 

MC68835 

Mm Max Unit 

0 5 10 ., 
210 - ns 

220 - ns 

- 20 ns 
10 - ns 

40 ns 

40 - ns 

10 - ns 

10 - ns 

60 - ns 



C 

FIGURE 3 - BUS TIMING TEST LOAD 

50V 

R MMD6150 
or Equ,v 

C"' 130 pF for DO-D7 
"'30 pF for MA0-MA13, AA0-AA4, 

DE, HS, VS, and CURSOR 
R = 11 k{l for 00-07 

= 24 kO for All Other Outputs 

CRTC TIMING CHARACTERISTICS <See F,gu,e 41 

MC6835 MC68A35 MC68B35 

Characteristics Symbol Mm Max Min Max Min Max 

Minimum Clock Pulse Width, Low PWcL 150 - 140 - 130 -
Minimum Clock Pulse Width, High PWcH 150 - 140 - 130 -
Clock Frequency <c 330 - 300 - 270 -
R,se and Fa11 Time for Clock Input lr, lf - 20 - 20 - 20 

Memory Address Delay T 1me 1MAD - 160 - 160 - 160 

Raster Address Delay Time 1RAD - 160 - 160 - 160 

Display T1m1ng Delay Time IQTD - 250 - 250 - 200 

Honzontat Sync Delay T,me 1HSO - 250 - 250 - 200 

Vertical Sync Delay T,me 1vsP - 250 - 250 - 200 

Cursor Display T 1mIng Delay T ,me tcoD - 250 - 250 - 200 

FIGURE 4 - CRTC TIMING CHART 

~--PWCL 

CLK 

MAO-MA13 

RA().AA4 

DE 

HI 

vs 

CURSOR 

Unit 

ns 
ns 
ns 
ns 
ns 
ns 
ns 
ns 
ns 
ns 

NOTE T1m1ng measurements are referenced 10 and from a low voltage of O 8 volts and a high voltage of 2 (, volts unless 0Iherw1se noted 

® MOTOROLA Semiconductor Products Inc. 

4 

• 

0 



MC6835 

CRTC INTERFACE SYSTEM DESCRIPTION 

The MC6835 CRT Controller generates the signals 
necessary to mterface a d191tal system to a raster scan CRT 
display In this type of display. an electron beam starts m the 
upper left hand corner, moves quickly across the screen and 
returns This action 1s ca11ed a honzontal scan After each 
horizontal scan the beam 1s incrementally moved down tn the 
vertical direction until 1t has reached the bottom At this 
point one frame has been displayed. as the beam has made 
many honzontal scans and one vertical scan 

Two types of raster scanning are used 1n CRTs, interlace 
and non-mterlace, shown m Figures 5 and 6 Non-,nterlacmg 
scanning consists of one fteld per frame The scan lines 1n 
Figure 5 are shown as sohd Imes and the retrace patterns are 
1nd1cated by the dotted hnes Increasing the number of 
frames per second wdl decrease the flicker Ord1naniy, either 
a 50 or 60 frame per second refresh rate 1s used to mm1m1ze 
beating between the frequency of the CRT honzontal 
oscillator and the power line frequency This prevents the 
displayed data from weaving or sw1mm1ng 

Interlace scannmg 1s used m broadcast TV and on data 
monitors where high density or high resolution data must be 
displayed Two fields, or vertical scans are made down the 
screen for each smgle picture or frame The first field (Even 

field) starts m the upper left hand corner, the second (Odd 
field) 1n the upper center Both fields overlap as shown 1n 
Figure 6, thus 1nterlac1ng the two fields into a single frame 

In order to display the characters on the CRT screen the 
frames must be continually repeated The data to be 
displayed 1s stored 1n the Refresh (Screen) memory by the 
MPU controlling the data processing system The data 1s 
usually wntten m ASCII code, so n cannot be directly 
displayed as characters A Character Generator ROM 1s 
typically used to convert the ASCII codes mto the "dot" pat
tern for every character 

The most common method of generating characters 1s to 
create a matrix of "x" dots lcolumnsl wide and "y" dots 
(rows) high Each character ,s created by selectively fllhng 1n 
the dots As "x" and "y" get larger a more deta,led character 
may be created Two common dot matnces are 5x 7 and 
7 x 9 Many vanat1ons of these standards will allow Chinese, 
Japanese, or Arabic letters mstead of Enghsh Smee 
characters require some space between them, a character 
block larger than the character 1s typically used as shown m 
Figure 7 The figure also shows the corresponding t1mmg 
and levels for a video signal that would generate the 
characters 

FIGURE 5 - RASTER SCAN SYSTEM (NON-INTERLACE) 

Active Display 

® 

' 

Vertical Scan Period ______ _._ 

Horizontal Scan 
Period 

Horizontal Retrace 
Period 

FIGURE 6 - RASTER SCAN SYSTEM (INTERLACE! 

----Even Number Field !first) 

---- Odd Number Field ISecondl 

--------
MOTOROLA Semiconductor Products Inc. 

5 



MC6835 

FIGURE 7 - CHARACTER DISPLAY ON THE SCREEN ANO VIDEO SIGNAL 

One Line 
14 Scan 

Lines 

2 

4 

b 

8 

10 

12 

14 

First Scan Line 

Second Scan Line 

One Ct1araL ter 

Clock 

~ 
2 4 b 8 

f .... .... 

I l ........ l 

I 

11 

Referring to Figure 1, the MC6835 CRT controller 
generates the Refresh addresses (MA0-MA13), row ad
dresses IRAO-RA4), and the video t1mmg (vertical sync -
VS, honzontal sync - HS and display enable - DE) Other 
functions include an internal cursor register which generates 
a Cursor output when its contents compare to the current 
Refresh address A select input. PROG, allows select1on of 
one of two mask programmed video formats le g , for 50 Hz 
and 60 Hz compat1b11ity) 

All t1m1ng m the CATC 1s derived from the CLK input In 
alphanumeric terminals, this signal 1s the character rate The 
video rate or "dot" clock 1s externally d1v1ded by high speed 
logic (TTU to generate the CLK signal The high speed logic 
must also generate the timing and control signals necessary 
for the Sh1ft Register, Latch and MUX Control shown 1n 
Figure 1 

The processor communicates with the CRTC through an 
8-b1t data bus by writing mto the five user programmable 
registers of the MC6835 

The Refresh memory address 1s multiplexed between the 
processor and the CRTC Data appears on a secondary bus 
separate from the processor's bus The secondary data bus 
concept 1n no way precludes using the Refresh RAM for 
other purposes It looks hke any other RAM to the processor 
A number of approaches are possible for solving contentions 
for the Refresh memory 

1 Processor always gets pnonty (Generally, "hash" oc· 
curs as MPU and CRTC clocks are not synchronized I 

I 

f l 

} 

Cha,acte, 
Display 

L,ne Space 

2 Processor gets pnonty access anytime, but can be 
synchronized by an interrupt to perform accesses only 
during honzontal and vertical retrace times 

3 Synchronize the processor with memory wait cycles 
(states) 

4 Synchronize the processor to the character rate as 
shown in Figure 8 The M6800 processor famlly works 
very well 1n this configuration as constant cycle 
lengths are present This method provides no 
overhead for the processor as there 1s never a conten· 
t1on tor a memory access AH accesses are 
transparent 

FIGURE 8 - TRANSPARENT REFRESH MEMORY 
CONFIGURATION TIMING USING Pv16800 FAMILY MPU 

E 

E 

I 
I 
I 

CRTC Accesses 
Refresh Memory 

MPU Accesses 
Refresh Memory 

~111 ... --tcyc=nxtc or lclm---..; 

I 

Where m. n are mtegers, tc 1s character period 

@ MOTOROLA Semiconductor Products Inc. 
6 

0 



.. 

MC6835 

PIN DESCRIPTION 

PROCESSOR INTERFACE 

The CRTC mterfaces to a processor bus on the data bus 
(00-D7) usmg CS, RS, E, and W for control signals 

Data Bus (D0-O7) - The data Imes mo D7) comprise the 
wnte only data bus 

Enable (E) - The Enable signal ts a h1gh-1mpedance 
TTL/MOS-compatible mput which enables the data bus m
put/output buffers and clocks data to the CRTC This signal 
Is usually denved from the processor clock The high to low 
transItIon Is the actrve edge 

Chip Select (CS) - The CS hne Is an active-low h1gh-
1mpedance TTL/MOS-compatible mput which selects the 
CRTC wnte to the internal register Me This signal should 
only be active when there Is a valid stable address bemg 
decoded from the processor 

Register Select (RSI - The RS lme Is a h1gh-1mpedance 
TTL/MOS-compatible input which selects either the Ad
dress Register (RS="0") or one of the Data Registers 
(AS= "l"l of the mternal register file when CS ,slow 

Write (WI - The W line Is a h1gh-1mpedance TTL/MOS
compat1ble mput whtch determines whether the internal 
register file gets written A write Is defined as a low level 

CRT CONTROL 

The CATC provides horizontal sync (HS), vertical sync 
(VS), and display enable lDEl signals 

NOTE - Care should be exercised when 1nterfac1ng to 
CAT monitors as many monitors cla1m1ng to be "TTL com
patible," have transistor input circuits which require the 
CATC or TTL devices buffenng signals from the CATC/v1deo 
circuits to exceed the maximum rated dnve currents 

Vertical Sync tVSl and Horizontal Sync (HSI - These 
TTL-compatible outputs are act1ve-h1gh signals which drive 
the monitor directly or are fed to the video processing cir
cuitry to generate a composite video signal The VS signal 
determines the vertical posItIon of the displayed text while 
the HS signal determines the honzontal pos1tIon of the 
displayed text 

Display Enable (OE) - This TTL-compatible output is an 
act1ve-h1gh signal which 1nd1cates the CATC Is prov1dmg ad
dressmg m the active Display Area 

REFRESH MEMORY /CHARACTER GENERATOR AO
DRESSING 

The CRTC provides Memory Addresses !MAO-MA 13) to 
scan the Refresh RAM Row Addresses (AA0-RA4) are also 
provided for use with character generator ROMs In a 
graphics system both the Memory Addresses and the Row 
Addresses would be used to scan the Refresh RAM Both 

-- - --· 

the Memory Addresses and the Row Addresses continue to 
run during vertical retrace thus allowing the CRTC to provide 
the refresh addresses required to refresh dynamic RAMs 

Refresh Memory Addresses (MAO-MA 13) - These 14 out
puts are used to refresh the CRT screen with pages of data 
located w1th1n a 16K block of refresh memory These outputs 
are capable of driving one standard TTL 1oad and 30 pF 

Row Addresses (RAO-RA41 - These five outputs from the 
internal Row Address counter are used to address the 
Character Generator ROM These outputs are capable of 
driving one standard TTL load and 30 pF 

OTHER PINS 
Cursor - This TTL-compatible output 1nd1cates a vahd 

Cursor address to external video processing logic It Is an 
act1ve-h1gh signal 

Clock (CLK) - The CLK Is a TTL/MOS-compatible input 
used to synchronize all CAT functions except for the pro
cessor interface An external dot counter Is used to denve 
this signal which 1s usually the character rate 1n an 
alphanumeric CAT The active trans1tIon Is high-to-low 

Program Select (PROG) - This TTL-compatible input 
allows selection of one of two sets of mask programmed 
video formats Set zero Is selected when PROG Is low and 
set one Is selected when PAOG Is high 

Vee, GND - These inputs supply + 5 Vdc ± 5% to the 
CRTC 

RESET The RESET input Is used to reset the CATC 
Funct1onal1ty of RESET differs from that of other M6800 
parts Rtll must remain low for at least one cycle of the 
character clock (CLKl A low level on the RESET input 
forces the CATC into the following state 

a All counters in the CATC are cleared and the device 
stops the display operation 

b All the outputs are driven low, except the MAO-MA 13 
outputs which are dnven to the current value m the 
Start Address Register 

c The control registers of the CRTC are not affected and 
remain unchanged 

d The CATC resumes the display operation 1mmed1ately 
after the release of RESET 

CRTC DESCRIPTION 

The CATC consists of mask-programmable honzontal and 
vertical tImIng generators, software-programmable linear ad
dress register, mask-programmable cursor logic and control 
circuitry for interfacing to a M6800 family microprocessor 
bus 

All CATC t1mmg 1s denved from CLK. usually the output of 
an external dot rate counter Co1nc1dence (COl cIrcuIts con
tinuously compare counter contents to the contents of the 

@ MOTOROLA Semiconductor Products Inc. 
7 



MC6835 

TABLE 1 - INTERNAL REGISTER ASSIGNMENT 

cs RS 
Address RAt'I 1ster RegtSter 

Register File 
Program 

Read Wnte 
Number of Bits 

4 3 2 1 0 I Unrt 7 6 5 4 3 2 1 0 

1 X X X X X X X - - - - I"-. I'\ 
'\ " I"-. I"\ I'\ ' 0 0 X X X X X AR Address Register - No Yes I"\ I, '\ 

RO Horizontal Total Char No No 
R1 Horizontal Displayed Char No No 
R2 H Sync Pos1t1on Char No No 

Note 3 R3 Sync Width - No No V V V V H H H H 

R4 Vertical Total Char Row No No "' 
R5 V Total AdJUSt Scan line No No ,1, '\ 

R6 Vertical Displayed Char Row No No I"\ 
R7 V Sync Pos111on Char Row No No ' RS Interlace Mode and Skew Note 1 No No C C D D I I 

R9 Max Scan Lme Address Scan Line No No 
' ' f'\ 

R10 Cursor Start Scan Line No No I"\ 8 p !Note 2) 

R11 Cursor End Scan Line No No I'\, 'f'\ 
0 1 0 1 1 0 0 R12 Start Address (Hl - No Yes 0 0 

0 1 0 1 1 0 1 R13 Start Address (L) - No Yes 

0 1 0 1 1 1 0 R14 Cursor (HI - No Yes 0 0 

0 1 0 1 1 1 1 R15 Cursor tU - No Yes 

NOTES 
1 The Interlace Control is shown in Table 2 while Skew Control 1s shown in Table 3 
2 811 5 of the Cursor Start Raster Register 1s used to blink period control, and Bit 6 ,s used to select blink or non-blink 
3 AO-A11 are mask-programmable and are not accessible via the data bus 

mask programmable register file, AO-A11 For horizontal tIm 
Ing generation, comparisons result ,n 

1 Horizontal sync pulse (HS) of a frequency, position 
and width determined by the register contents 

2 Horizontal Display signal of a frequency, posIt1on and 
duration determined by the register contents 

The horizontal counter produces H clock which drives the 
Scan Lme Counter and Vertical Control The contents of the 
Raster Counter are continuously compared to the Max Scan 
Line Address Register A comctdence resets the Raster 
Counter and clocks the Vertical Counter 

Comparisons of Vertical Counter contents and Vertical 
Registers result m 

1 Vertical sync pulse (VSl of a frequency, posItIon and 
width determined by the register contents 

2 Vertical Display signal of a frequency, posItIon, and 
duration determined by the register contents 

The Vertical Control Logic has other functions 

1 Generate row selects, RAO-RA4, from the Raster 
Count for the corresponding interlace or non-mterlace 
modes 

2 Extend the number of scan hnes m the vertical total by 
the amount programmed In the Vertical Total Ad1ust 
Register 

The cursor tog1c determines the size and blink rate of the 

cursor as indicated by the register contents 
The Linear Address Generator Is driven by CLK and 

locates the relat,ve posItIons of characters m memory and 
their posItIons on the screen Fourteen outputs, MAO-MA 13, 
are available for addressing up to four pages of 4K 
characters, eight pages of 2K characters, etc 

Five additional wnte-only registers define the Start Ad
dress and cursor pos11Ion Using the Start Address Register, 
hardware scrolhng through 16K characters Is possible The 
Linear Address Generator repeats the same sequence of ad
dresses for each scan line of a character row The Start Ad
dress Register and the Cursor Pos1t1on Register are program
med by the processor through the data bus, D0-D7 and the 
control signals - W, CS, RS, and E Refer to Figure 9 

REGISTER FILE DESCRIPTION 

The MC6835 has 17 control registers of which 12 are mask 
programmable The remaining five registers - Address 
register. Start Address register pair, and Cursor Pos1t1on 
register pair - are wnte-only registers programmed by the 
MPU These registers control horizontal t,mmg, vert,cal tIm
mg, interlace operation, row address operation and define 
the cursor, cursor address, and start address The register 
addresses and sizes are shown In Table 1 

MOTOROLA Semiconductor Products Inc. 
8 

0 



j 

., 

MC6835 

FIGURE9 - CATC BLOCK DIAGRAM 

Vee GND Prog W CS RS E RESET 

+ + • • • • + • . A R0-2 
Address Register 

r~ 
and Decoder 

t- - - - - - --i 
Horizontal >--- HH 

CU< CTR I+ 2561 - .,,_ 
7Rol 

Horizontal Total 
MC •CO Reg. 

y i..+-1" • Q 

' 
- ,s 

H O&Splay --;::l....) Hend r1-, A 
H .,,_ A 

1 R1 I Horizonal Displayed 
JI co,:;: Reg. r . 

HS CE Horizontal .. . 
Sync Width - ll co IC •R21 Sync Position Reg. .......... CTRI + 161 .... 

~ ~~ MC 
Q • CU< 

- R 

·-,r;j· Horizontal Sync co IC IR31 
r' ~ 

Width Register 

Character Lr-, A 

,_. C Row 
JI co IC IR41 Vertical Total Reg. 

CTR I+ 1281 -- .,, '-~ ,. 
MC 

• 
A 

I RSI 
Vertical Total 

I • Adjust Register 

Vertical 
VOisplay 

Control ~-H •RSI Vertical Displayed 
HH y • Reg. 

-" A 

IR7 I Vertical Sync _,_,... 
~. .... Position Reg . 

. 
I RB I Interlace Mode Reg. : . . 

pl Scan line 
~A H ,c CTR I +321 1R91 

Max Scan Line 
MC Address Reg. 

J... 
. 

-- ~ 

' • t ~, 1ol Cursor Start Reg. 

. Cursor I 
l Contof I . 

• :R11I Cursor End Reg. 

A 

R1~1 
• 

Hend__., linear •Ail Start Address Reg. I( 

Address 
I ~ CLK-.. Generator co .. R14 

)IR1JI Cursor Address Reg. - __J 
I I - • • I 

◊MAO-MA13 I D0-O7 'v7RAO-RA4 

@ MOTOROLA Semiconductor Products Inc. 
9 

-DE 

HS 

vs 

CURSOR 



' MC6835 

MASK PROGRAMMABLE REGISTERS RO-R11 

The twelve mask programmable registers determine the 
display format generated by the MC6835 The PROG input ,s 
used to select one of two sets of register values 

Figure 10 shows the v1s1ble display area of a typical CRT 
monitor 91vmg the point of reference for horizontal registers 
as the left most displayed character pos1t1on Honzontal 
registers are programmed ,n character clock time units with 
respect to the reference as shown 1n Figure 11 The point of 
reference for the vertical registers 1s the top character pos1-
tIon displayed Vertical registers are programmed In 
character row times or scan hne times as shown m Figure 12 

Horizontal Total Register (RO) - This 8-b1t register deter
mines the horizontal sync (HS) frequency by defining the HS 
penod In character times It ,s the total of the displayed 
characters plus the non-displayed character times (retrace) 
minus one 

Horizontal Displayed Register (R1) - This 8-b1t register 
determines the number of displayed characters per hne Any 
8-b1t number may be programmed as long as the contents of 
AO are greater than the contents of A 1 

Horizontal Sync Position Register (R2) - This 8-b1t 
register controls the HS posItIon The horizontal sync posI
tIon defines the horizontal sync delay (Front Porch) and the 
honzontal scan delay (Back Porch) When the programmed 
value of this register Is increased, the display on the CRT 
screen Is shifted to the left When the programmed value Is 

decreased the display Is shifted to the nght Any 8-b1t 
number may be programmed as long as the sum of the con
tents of A 1, R2, and the lower four bits of R3 are less than 
the contents of RO 

Sync Width Register (R31 - This 8-b1t register determines 
the width of the vertical sync IVS) pulse and the horizontal 
sync (HS) pulse Programming the upper four bits for 1-to-15 
will select VS pulse widths from 1-to-15 scan-line times Pro
gramming the upper four bits as zeros will select a VS pulse 
width of 16 scan line times The HS pulse width may be pro
grammed from 1-to-15 character clock periods thus allowing 
compat1b11ity with the HS pulse width spec1flcat1ons of many 
different monnors If zeros are written into the lower four 
bits of this register, then no HS Is provided 

Horizontal Timing Summary (Figure 11) - The difference 
between AO and R 1 Is the honzontal blanking interval This 
interval In the horizontal scan period allows the beam to 
return lretrace) to the left side of the screen The retrace time 
Is determined by the monitor's honzontal scan components 
Retrace time Is less than the horizontal blanking interval A 
good rule of thumb Is to make the horizontal blanking about 
20% of the total honzontal scanning penod for a CRT In In
expensIve TV receivers, the beam overscans the display 
screen so that aging of parts does not result tn underscan
ning Because of this, the retrace time should be about 1 /3 
the horizontal scanning period The honzontal sync delay, 
HS pulse width and horizontal scan delay are typically pro
grammed with 1 2 2 ratio 

FIGURE 10 - ILLUSTRATION OF THE CRT SCREEN FORMAT 

---------Number of Honzontal Total Char (Nht+ 11-1---------~ 

Number of Horizontal Displayed Char INhdl 

-A s-i:c 

Horizontal 

01splav Period 

Verucal Retrace Period 

Total Scan Line Ad1ust tNad1l

NOTE 1 Timing values are descnbed m Table 8 

@ MOTOROLA Semiconductor Products Inc. 
10 

Retrace 
Period 

}Lme 

• 

0 



® 
~ a 
~ 
)i 
Cl) 

~ o· 

I 
6' ., ,, 
I 
C') 

ti!' 
5' 
~ 

' ~.) _, 

FIGURE 11 - CRTC HORIZONTAL TIMING 

Horizontal Total tROl 
l-~,._---------------t51= 1Nh1+ llx le :1 
i:.:=.,_,c Horizontal Display (A1lNhd x tc----,-i-,1----------Honzontal Retrace------------~ 

CLK ~~-v,__ J"'"1...>...."""l__f""'1_______r" 
I I I I I I I I - 1 I I r- r- 1- 1 1 i 

I I I I I I I I I I I I I I I I I I I 0 

~ , ; * •=•l~fhd- 1

k Nhd * * ~ fhsp-f Nhsp* ~ ~ t * Nht ~ 0 1 
MAO MA13'~ * * ' * I I I I I I : I I I I I I t I I I I I 

I I ' l I j I~ rhd_,, Nhd I I I~ thsp-thsp j I ~=jt:=lt~ I j Nht I Character Id 0 

..-----------Horizontal Sync Pos1t1on IR2) I HS Pulse Width !A3J I I 
' Nh xt ~ 

I 
I 
I t4--Fron1 Porch (Sync Delay) ): f sw c ._, _ .. Back Porch ($can Delay~ 

HSYNC' · "'\, I "-. I -.,._ __ ....., I 
I 
I 

D1spen 

• T1m1ng 1s shown for first displayed scan row only See Chart 1n Figure 15 for other rows The 1rnt1al MA 1s determined by the contents of Start 
Address Register, R12/R13 Timing 1s shown for R12/A13=0 

NOTE 1 Timing values are described 1n Table 5 



@ 

! 
~ 
~ 
)ii 

;::; (I) 

~ o· 
0 :, 
@-
(') 

6" .. 
I 
lit 

~ 

RAO·AA4 
I I 
1s Interlace 
Sync and 
Video Mode 
Odd Field ' 

Ire. 

n 111 ' 

Vertical Dt~lay"' Nvd x trc!R6 

• • • . . 
. ' N~, . ' n 111 . 

FIGURE 12 - CRTC VERTICAL TIMING 

IF"' !Nvt+ 1) x Ire+ Nact,x Isl 
Field Time 

Vertical Total !R4) + Vertical Total Ad1ust !R5) 

I . l+'s1..J . . • 
I f\L~ 

-- I • ., 
0 ' 

Ven1caI Retrace 

• . • . . • • . .'"I '1 I . .. 
ltN51- n I !Nvct-11 x Nhd l!N5r- ll J !Nsi-llJ 

Address Continues to lncremen\ 
!Ns1- ll I 

MA0·MA13'' 

Character 
Row I 

VSYNC 

1+ - ~1;--.---~-~ ji--.---i--~11-...-1 
lo Nh,•1 lo Nh1*1 (Nvct-HxNhd+Nht I 

I I I I ~~ I I I I IO I INvct-li I 

I I I I : : j I 

~ I 
Nv5p- 1 I Nvsp I 

Vertical t4--l6xts1~ 
I ._Sync Delay 

(Non-Interlace) l j 
I 

I Vertical Sync 
I,. I I Ven1ca1 Sync I • Pulse I 

:::: 
Nv1 

Vertical Scan Delay 

. 
• . • 

/"\/1\ 

► 
Field Ad1ust Time 

Nvt + 1 

VSYNC 
(Even Field) 

I I I Pos111on !R7l I I I ► I 
it. j I I .. I "7 ► I ◄ 1'1 I .. I 

VSYNC 
(Odd Field) 

Display 
Enable 

' I I !>! 'ti ' M-!f I I I t I I I ... 2 ... ► I I I ◄ I,._ ◄ 
I I I I I I 

~ ~ !-> ;__ L...J-. ~ • • I -r-''--'.,.-JL...J~ ◄ ~ 

•Nh1 must be an odd number for both interlace modes 
.. lrn11al MA Is determmed by A12/A13 !Start Address Reg1sterl, which Is zero In this 11mmg example. 

• • • Ns1 must be an odd nu:--nber for Interlace Sync and Video Mode 

NOTES 

1. Refer to Figure 6 - The Odd Field is offset ½ horizontal scan time. 
2. Timing values are described in Table 5. 

~ 0 I) 



MC6835 

TABLE 4 - CURSOR ANO DE SKEW CONTROL 

Value Skew 

00 No Character Skew 

01 One Character Skew 

10 Two Character Skew 

11 Not Available 

Maximum Scan line Address Register (R9) - This 5-bit 
register determines the number of scan lines per character 
row 1ncludmg the spacing thus controlhng operation of the 
Row Address counter The programmed value 1s a maximum 
address and 1s one less than the number of scan lines 

Cursor Start Register {RlO) and Cursor End Register (Alli 
These registers allow a cursor of up to 32 scan lines 1n 

height to be placed on any scan line of the character block as 
shown m Figure 14 AlO 1s a 7 bit register used to define the 
start scan line and blink rate for the cursor Bits 5 and 6 of 
the Cursor Start Address Register control the cursor opera
tion as shown in Table 4 Non-display, display and two blink 
modes (16 times or 32 tunes the field penod) are available 
A11 Is a 5-bit register which defmes the last scan line of the 
cursor 

When an external bhnk feature on characters Is required, It 
may be necessary to perform cursor blink externally so that 
both blink rates are synchronized Note that an mvert/ non
invert cursor Is easily implemented by programming the 
CATC for a bhnking cursor and externally inverting the video 
signal with an exclusive-OR gate 

PROGRAMMABLE REGISTERS 

The four programmable registers allow the MPU to posI 

t1on the cursor anywhere on the screen and allow the start 
address to be mod1f1ed 

The Address Register Is a f1ve-b1t wnte-only register used 
as an "1nd1rect" or "pointer" register 1ts contents are the ad
dress of one of the other 18 reg,sters When both RS and CS 
are low, the Address Register Is selected When CS Is low 
and RS Is high, the register pointed to by the Address 
Register is selected 

Start Address Register (Al2-H, R13-l) - This 14-bit 
write-only register pair controls the first address output by 
the CATC after vertical blanking 1t consists of an 8-b1t low 
order (MA0-MA7) register and a 6-b1t high order IMAB
MA 13) register The start address register determines which 
portion of the refresh RAM ,s displayed on the CRT screen 
Hardware scrolling by character, line or page may be ac
comphshed by mod1fy1ng the contents of this register 

Cursor Register (R14-H, R15-L) - This 14-bit wnte-only 
register pair Is programmed to position the cursor anywhere 
1n the refresh RAM area thus allowing hardware paging and 
scrolling through memory without loss of the ong1nal cursor 
position It consists of an 8-b1t low order IMA0-MA71 register 
and a 6-b1t high order {MAB-MA 13) reg1ster 

CRTC INITIALIZATION 

Registers A12-A15 must be 1nit1al1zed after the system Is 
powered up The processor will normally load the CRTC 
register file from a firmware table Figure 15 shows an M6800 
program which could be used to program the CAT Con
troller 

FIGURE 14 - CURSOR CONTROL 

' I -I 

0 -if--+---t-+--t--t---,-
1 --+-++-H-++-
2----+-++-H-++-
3 -if--+---t-+--t--t---,-
4 -+++-I-+++-
5 ---+-+-+--t--t---+-1-
6 -+++-I-+++-
7-if--+---t-+--t--t---+-
B---1-++-H-++-
9 

10 
11---l-+-++-H--+-

Cursor S1art Adr = 9 
Cursor End Adr = 9 

On O!f On 

~ Blink Period= 
I 16 or 32 Times 

Field Period 

Example of Cursor Display Mode 

1 
0 

2 
3 
4 

5 
6 
7 
8 
9 

10 
1 

Cursor Start Adr = 9 
Cursor End Adr = 10 

•• 

0 
1 
2 
3 
4 

5 
6 
7 
8 
9 

10 
11 

e ~ 

~ 

Cursor Start Adr = 1 
Cursor End Adr = 5 

@ MOTOROLA Semiconductor Products Inc. 
14 

0 



j 

., 

MC6835 

ADDITIONAL CRTC APPLICATIONS quired to meet system spec1f1cat1ons The worksheet of 
Table 5 1s extremely useful 1n computing proper register 
values for the MC6835 The program shown 1n Figure 15 may 
be expanded to properly load the calculated register values in 

the MC6845 Once the two sets of register values have been 
developed. Ml out the ROM program worksheet of Figure 18 

The foremost system function which may be performed by 
the CRTC controller 1s the refreshing of dynamic RAM Th1s 
1s quite simple as the refresh addresses continually run 

Both the VS and the HS outputs may be used as a real 
time clock Once programmed, the CATC will provide a 
stable reference frequency To order a custom programmed MC6835, contact your 

local field service office. local sales person or your local 
Motorola representative A manufactunng mask wlll be 
developed for the data entered in Figure 18 

SELECTING MASK PROGRAMMED REGISTER VALUES 

A prototype system may be developed using the MC6845 
CRTC This will allow register values to be mod1f1ed as re-

FIGURE 15 - M6800 PROGRAM FOR CRTC INITIALIZATION 

PAGE 001 CRTCINIT.SA:l MC6835 CRTC initialization program 

00001 
00002 
00003 
00004 
00005 
00006 
00007 
00008 
00009 
00010 
00011 
00012A 0000 
00013A 0000 
00014A 0002 
00015A 0005 
00016A 0008 
00017A 000A 
00018A 000D 
00019A 000E 
00020A 000F 
00021A 0011 
00022A 0013 
00023 
00024 
00025 
00026A 1020 
00027A 1020 
00028A 1022 
00029 
TOTAL ERRORS 

C6 
CE 
F7 
A6 
87 
08 
SC 
Dl 
26 
3F 

9000 
9001 

0C 
1020 
9000 
00 
9001 

NAM MC6835 
TTL CRTC initialization program 
OPT G,S,LLE=85 print FCB'x, FDB's & XREF table 

******************************************************** 
* Assign CRTC address 
• 

A CRTCAD EQU $9000 Address Register 
A CRTCRG EQU CRTCAD+l Data Register 

•••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
• Initialization Program 
• 

ORG 
A LDAB 
A LDX 
A CRTCl STAB 
A LDAA 
A STAA 

INX 
INCB 

0 
SC 
38RTTAB 
CRTCAD 
0,X 
CRTCRG 

a place to start 
initialize pointer 
table pointer 
load address register 
get register value from 
program register 
increment counter 

table 

10 A 
F2 0005 

CMPB $10 finished? 
BNE CRTCl no: take branch 

0080 
0080 

SWI yes: call monitor 
•••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
* CRTC register initialization table 
• 

A CRTTAB 
A 

ORG 
FDB 
FDB 
END 

$1020 
$0080 
$0080 

start of table 
Rl2, Rl3 - Start Address 
Rl4, Rl5 - Cursor Address 

00000--00000 

CRTCl 0005 CRTCAD 9000 CRTCRG 9001 CRTTAB 1020 

@ MOTOROLA Semiconductor Products Inc. 
15 



@ 
TAIL.II - am: l'OMIAT-

~ 
a 
8 ,.. 
:Iii 

;;; Cl) 

1 
ri' 
0 
::i 

Display Fol'fl'III Walbhaet CRTC ........ 

Displayed Characters per Row ------ Char Decimal He, 

2 Displayed Character Rows per Screen Rows 
RO Horizontal Tot;:il (line 15- 1) 

3 Charatter Matrix a Columns Columns 
Rl Horizontal O,splayed !Lme n 

b Rows Rows 
R2 Horizontal Sync Position llme 1 + Line 12) 

4 Characte1 Block a Columns Columns 
R3 Horizontal Sync W1d!h (Line 13) 

b Rows Rows 
R4 Vertical Tota! Cline 9-1) 

5 Frame Refresh Rate Hz 
A5 Ven1cal Ad1ust (line 9 L1nesl 

6 Horizontal Oscillator Frequency Hz 
R6 Vertical Displayed !Line 2J 

7 Active Scan Lines (line 2x Line 4bl Lines 
R7 Vertical Sync Pos111on !Line 2+ Line 101 

8 Total Scan Lines (line 6- Line 5) Lines 
RB Interlace (00 Normal, 01 Interlace, 

9 Total Rows Per Screen llme B~ Line 4bl ___ Rows and __ L..- 03 ln1erlace, and V1deol 

t 
c5' ., 

10 Vertical Sync Delay (Char Aowsl Rows R9 Max Scan line Add (lme 4b-1l 

11 Vertical Sync Width (Scan lrries 116)) lmes R 10 Cursor Start 

12 Horizontal Sync Delay {Character T 1mesl Char T,mes R11 Cursor End 

~ 

i n 

13 Horizontal Sync Width (Character T1mesl ChJr Times R12. R13 Stan Address IH and ll 

14 Hor1zo11tal Scan Delay !CharaCUH Times! Char Times A14, R15 Cursor ( H and L) 

15 T mal Ctiara{,ter Times llme l + 12 + 13 + 14, Char Times 

lit 16 Character Rate 1L1ne 6x 15l Hz 

:i' 
!') 

17 D01 Clock Rate (line 4a A. 16) Hz 

() 0 t) 



' lJ 9) 

@ TAIU!. - -.nllT - •x:at fOIIMAT 

Display FonMt Worksheet CRTCllogilllow 

! 1 Displayed Characters per Row 80 Char Decimal He, 
2 Displayed Character Rows per Screen 24 Rows 

RO Horizontal Total (lme 15 minus 1l 101 _____§ 

~ 
3 Character Ma1r1x a Columns 7 Columns 

9 
Al Horizontal D,sptayed !Lme 1l 80 50 

b Rows Rows ---
4 Character Block a Columns 9 Columns R2 Horizontal Sync Pos1t1on (lme I+ Lme 121 86 __ 56 

~ 
b Rows 11 Rows R3 Horizontal Syrn .. Width (line 13! 9 __ 9 

5 Frame Retresh Rate 60 H, R4 Vertical Total (lme 9 mmus 11 27 __ 1_8 

~ 6 Horizontal Osc,llator Frequency 18 600 H, A5 Vertical Ad1us1 (Line 9 L1nesl 2 OA 

7 Active Scan Lines (Line 2 x Line 4bl 264 lines R6 Vert,cat Displayed !Line 2l 24 __ 1_8 
~ en 

~ 
8 Total Scan lines (Line 6- Line 5! 310 lines R7 Vertical Sync Pos1t1on (line 2 + Line 10) 24 18 

9 Total Rows Per Screen !Line 8- Line 4b) __ 28_ Rows and __ 2_ lines RS Interlace 100 Norma\ 01 Interlace, 0 
i', 03 Interlace and Video) 
0 10 Vertical Sync Delay (Char Rows) Row~---
::, 16 R9 Max Scan Line Adel tlme 4b minus U 10 __ 8 

@-
11 Vertical Sync Width (Scan Lines (16)) Lines 

6 
R 10 Cursor Stan 0 0 

C') 
12 Hor1zon1al Sync Delay tCharac1er Times) Char Times ---

6' 13 9 
All Cursor End 11 B 

Horizontal Sync W1d1h (Character Times) Char Times ---., 
7 R12 R13 Start Add1ess (Hand Ll 128 00 

l 
14 Horizontal Scan Delay !Character Times) Char Times ---

15 102 
80 

Total Choracter Times (line 1 + 12+ 13+ 141 Char Times ---

16 1 8972 M 
R14 R15 Cursor(HandLJ 128 00 

Character Rate {Lme 6 umes 15) MH, ---
~ 17 Dot Clock Rate (L111P 4a times 161 17 075 M MH, 

___fil_ 

;i-

~ 



, . 

OPERATION OF THE CRTC 

Timing of the CRT Interface Signals - Timing charts of 
CRT interface signals are illustrated 1n this section with the 
aid of programmed example of the CRTC When values 
hsted m Table 7 are programmed into CRTC control 
registers, the device provides the outputs as shown 1n the 
T1m1ng Diagrams (Figures 11, 12, 16, and 17) The screen 

format of th,s example 1s shown m Figure 10 Figure 17 1s an 
1llustrat1on of the relation between Refresh Memory Address 
(MAO MA13). Raster Address !RAO-RA4) and the pos,11on 
on the screen In this example, the start address ts assumed 
to be "O" 

TABLE 7 - VALUES PROGRAMMED INTO CRTC REGISTERS 

Register 
Register Name Value 

Programmed 
Number Value 

RO H Total Nht+ 1 Nht 
Al H Displayed Nhd Nhd 
R2 H Sync Pos1t1on Nhso Nhso 
R3 H Sync Width Nhsw Nhsw 
R4 V Total Nvt+ 1 Nvt 
R5 V Scan Lme AdJuSt Nad1 Nad1 
R6 V Displayed Nvd Nvd 
R7 V Sync Pos,uon Nvsp Nvsn 
RB Interlace Mode 

R9 Max Scan Line Address Nsl N,1 

RIO Cursor Start 

All Cursor End 

R12 Start Address tH) 0 
R13 Start Address Ill 0 

R14 Cursor (H) 

R15 Cursor (ll 

® MOTOROLA Semiconductor Products Inc. 
18 

0 



I) 

@ 

! 
a :r, 
~ 
;a.. 

;;; Cl) 

~ o· 
0 ::s 
Q. 
§ 
0 .. 
l 
§ 
;;;-, 

l .. J IIJ 

FIGURE 16 - CURSOR TIMING 

RAO-RM' 

~ I 

2 ·1 3 I 
I I 

) ' Lt! ' ~ J[ ,±, ! MAO MA13 .. * 
I Nhd 

Po .1 

'Nhd+l ,NM+2P" l'llhdT 
1 1 

Nht 
Nhd 

•I•• ~ I " I f Nhd+11Nghd+21 I Nhd+ 1 Nh~I Nhd+ l;Nhd tL ;---~· 
I I I I Nh I I I I Nhl I 

Character Row t t 
I 
I 

Character I t 
0 

: : : ; t : : ! : : ' 
I I I I I I I : I I i i i : 
I ~ I I I I j ~ I I I I ' ~ ' I 
I ,~ I I I! I I I f ~ I 

11.1. n 1 I I 2 1 .,. Nht O 1 I 2 I l'lht v , .,_ ···-· 

I I I I I I 

Cursor _____ _,t---j, ___________ ,l-----i I ' 

0 T1m1ng ,s shown for non mterlace and interlace sync modes 
Example shown has cursor programmed ac; 

Cursor Register= Nhd + 2 
Cursor Start"" 1 
Cursor End= 3 

""The m111al MA 1s determined by 1he contents of Start Address Regester, R12/R13. T1m1ng II shown lor R12/R13=0 

NOTE 1 T1mmg values are described ,n Table 8 



@ 

! 
~ 
~ 
:Iii 

~ I 
i'i" 

I 
C) .. 
l 
~ 
lit 

~ 

> a • 6 

" " t 
> 

> a 
6 c 
0 ;; 
• 

~ 
u ; ~ 
,= 0 
u"' 

• C 
_:; 
C 

~ 
u, 

0{ N: 

1{N: 

I 

I 

' 

I 

2{N,O 
I 

I 

Nvd- l{ 0 
N51 

I 

' 

Nvd{ n 
Ns 

I 

' 

I~ 
0 

I 
I 
0 

Nhd 
I 
' Nhd 

2XNhd 

I 
I 

2XNM 

j 
(Nvd- ll x Nhd 

i 
(Nvd- f) x Nhd 

Nvd x Nhd 

I 
N..,dxNhd 

-

FIGURE 17 - REFRESH MEMORY AODRESSING IMAO-MA131 STATE CHART 

Horizontal Display Homontal Retrace (Non•D1splayl 

I 
1 Nh9- l N~d -
' -
I I I 
I - ' Nhd-1 Nhd 

Nhd+ l - 2XNhd-1 2XNhd -
' ' I I I 

Nhd+ 1 2XNhd- 1 2xNhd -
2XNhd + l - 3XNhd- 1 3X~hd 

' ' I I I 
2XNh,j+ 1 - 3XNhd- 1 3XNhd 

l l l 
!Nvd-1) x Nhd+ 1 NvdxNhd+l Nvd ~ Nhd 

I I 

' I I 
iNvd-11x Nhd+ 1 - NvdxNhd-1 Nvd x Nhd --

NvdxNhd+l - !Nvd+ Hx Nhd- 1 (Nvd+ ll x Nhd 

' I ' I I I 
Nvdx Nhd+ 1 !Nvd+lJxNhd-1 (Nv1 + 1) X Nhd 

u 
~ Nv,{ O 

I '"v,xNhd Nv1xNhd+l !Nv1+1l~Nhd-1 (Nvt+~)xNhd 
;; 
"' .. 
" Ns I 
t 
> ' 

I 

N,1+1{ 
Nad 

-1 

f' 

I ' I I I 
Nv1 ~ Nhd I (Nvt+l)xNhd-1 (Nv1+1)xNhd 

!Nvt + 11 x Nhd lNvt+l);Nhd+l !Nv1+2)_x NM-1 (Nvt+~l x Nhd 
I 
I I I I 

lNvt + 1) x NM !Nvi+l)xNd+l (Nv1+2)xNhd-1 !Nvt + 2) x Nhd 

NOTE 1 The 1nit1al MA 1s determmed by the contents of start address register, R12/R13 Timing 1s shown for R12/R13=0 Only Non• 
Interlace and ln1erlace Sync Modes are shown 

0 

Nht 
I 
I 
I Nh1 

Nhd+Nht 
I 
I 
I 

Nhd+Nht 

2Nti,j+ Nht 
I 
I 

2Nhd'+ Nht 

l 
!Nvd-1lxNhd+Nht 

I 
I 

INvd- ll><Nhd+Nht 

Nvrl x Nhd + Nht 
I 
I 

Nvd + Nhd + Nht 

Nvt x Nhd + Nht 
I 
I 

Nvt x Nj,d + Nht 

INv + 1 lNhd + Nht 
I 

I 
(Nvt+ l)Nhd+ Nht 

t) 



_) 

., 

MC6835 

FIGURE 18 - ROM PROGRAM WORKSHEET 

The value 1n each register of the MC6845 should be entered without any mod1hcations. Motorola will take care of translating into the appropriate 
format. 

D All numbers are 10 decimal. 

RO 

R1 

R2 

R3 

R4 

R5 

R6 

R7 

RS 

R9 

R10 

R11 

ROM 
Program 

Zero 
(PROG=0I 

D AU numbers are in hex. 

ROM 
Program 

One 
(PROG= 11 

ORDERING INFORMATION 

Package Type Frequency 1MHz) Temperature Order Number 

Ceramic 1.0 0°c to 10°c MC6835L 
L Suffix 1.0 - 50°c to 85°C MC6835CL 

1.5 0°c to 70°C MC68A35L 
1.5 - 50°C to 85°C MC68A35CL 
20 0°c to 10°c MC68B35L 
2.0 - 50°C to 85°c MC68835CL 

Cerdip 1.0 0°c to 70°C MC6835S 
S Suffix 1.0 - 50°c to as0 c MC6835CS 

1.5 0°c to 70°C MC68A35S 
1 5 - 50°C to 85°C MC6BA35CS 
20 0°c to 10°c MC68B35S 
2.0 - 50°C to 85°C MC68835CS 

Plastic 1.0 0°c to 10°c MC6835P 
P Suffix 1.0 - 50°C to as 0 c MC6835CP 

1.5 0°c to 10°c MC68A35P 
1.5 -50°C to 85°C MC68A35CP 
20 0°c 10 70°C MC68B35P 
20 -50°C to 85°C MC68835CP 

(f!) MOTOROLA Semiconductor Products Inc. 
21 



MC683S-

PACKAGE DIMENSIONS 

[ □ :] f 
I 

t· J I I 
H '::lo 

A---j _lrLJ 
I llil!l:O'J en 

I I I It 11 ,y·,,-TN~1 
SEATING PLAN'ol_J L 7(1" ..1--J M-j 

r:00000000000000=] 

Ovovovvvooovvooooo 

• 

r---- -- A - C --:·;, 
-1.1.- -•- - - F J. 0 ' 

[ :: ::: ::: : :: ::::: :::i J 

L SUFFIX 
CERAMIC PACKAGE 

CASE 715-04 

M$LLIMETERS 
DIM MIN MAX 
A 51 31 
I 14 !M 15)1 
C 305 406 
D 031 OS3 
f 076 140 
G HUSC 
M Q'H: 118 
J 0211 033 
K 2S4 419 
l 1499 1549 . , .. 
II I 02 1 S2 

INCHES 
MIIII MAX 
19IO 20l0 
0588 0604 
0 120 0 160 
0015 0021 
0030 08!15 

0.100 ISC 
O on10 
0001 0013 
0 100 0 165 
0590 0610 
- , .. 

0040 0060 

~!_!~RS I IHCHES 
OtM MIN MAX MIN MAX 

: ~~:~ ~:;;i--t::: ~:~ 
C 394 508 0155 0200 
0 036 056 0014 0022 
f 102 H2 0040 0060 
G 2S48SC 01008SC 
H 165 216 006510085 
J 020 0JB oooa 1 001s 
K 292 43 011510135 
l I 15248SC O&OOBSC 
M I r,i 1so oo 1so 
N 0S1 102 0020 1 0040 

NOTES 
I LEADS TFIU£ POSITIONED WITHIN 025 111m 

IO 0101 DIA {AT SEATING Pl A NE) AT MAX 
MAT L CONOlTll)N 

2 DIMENSION l TO CENTER Of LEADS 
WHEN FORMED PARALLEL 

P SUFFIX 
PLASTIC PACKAGE 

CASE 711-03 

NOTES 
1 POSITIONAL TOLERANCE OF LEADS ID) 

SHALL IE WITHIN O 25 mm to 0101 AT 
MAXIMUM MATERIAL CONDITION IN 
RElATION TO SEATING PLANE ANO 
EACH OTHER 

2 OIM£NSION l TO CENTER Of LEAOS 
WHEN FOAMEO PARALtEl 

3 OIMUSION 8 DOES NOT INCLUDE 
MOlO HASH 

S SUFFIX 
CERDIP PACKAGE 

CASE 734-0'3 

MllLIMETEAS INCHES 
NOTES I • lcL '=:] 

~J•I~ 
u u u u I LI u 1110! u_u u I ,_u fu,u=_-tj l. ,-i-

-lGI- - 1-F -Jl--o ~ 11 _j M 

DIM MIN MAX 
A Sl Jl 53 24 
I 1210 1549 
C 406 SM 
D Ola OS& 
F 1 ~J 16S 

MIM MAI 
1020 2 096 
0~ 0610 
0160 0230 
0015 0022 
oosa 0065 

0 1110 BSC 

1 OtMENSIQN,\ 15 DATU"1 
2 POSITIONAl TOLERANCE 

FDA lEADS 

l....£.ljrn100101@11 , ... c .. )i 
J [!J1SSEATINGPl,lllE 
4 OIMENSIOlt l TD tlNHA 

Of llADS WHEN FOAMEO 
PAAAllEl 

£ 2SUSC 
020 lO 

I( JIB' '86 
l 1S248$C 
M S 1s• 
,. os1' 121 

"''"' s• 1s• 
0020 00!,0 

S DIMENSION A ANO B 
11tClUOES "1ENISCUS 

Motorola reserves the right 10 make changes 10 any products heretn 10 improve rehab1hty funct10n or design Motorola does not assume any habll1ty arising 
out of the apphcat1on or use of any product or circuit descnbed herem ne,1her does 11 convey any hcense under its patent rights nor the nghts of others 

® MOTOROLA Semiconductor Products Inc. 
3501 ED BLUESTEIN BLVD AUSTIN TEXAS 78721 • A SUBSIDIARY OF MOTOROLA INC 

0 



j 

\ ., 

WESTERN DIGITAL 
C 0 R p 0 R A T I 0 N 

BR1941(5016) Dual Baud Rate Clock 

FEATURES 
• 16 SELECTABLE BAUD RATE CLOCK FREQUENCIES 
• SELECTABLE 1X, 16X OR 32X CLOCK OUTPUTS FOR 

FULL DUPLEX OPERATIONS 
• OPERATES WITH CRYSTAL OSCILLATOR OR 

EXTERNALLY GENERATED FREQUENCY INPUT 
• ROM MASKABLE FOR NON-STANDARD FREQUENCY 

SELECTIONS 
• INTERFACES EASILY WITH MICROCOMPUTERS 
• OUTPUTSA50% DUTYCYCLECLOCKWITH0.01% 

ACCURACY 
• 6 DIFFERENT FREQUENCY/DIVISOR PAIRS 

AVAILABLE 
• TTL, MOS COMPATIBILITY 

• PIN COMPATIBLE WITH COM5016 

XTAUEXT 1 XTAUEXT 2 

Vee tr 

'R TA 

RA Te 

Re Tc 

Re To 

Ro STT 

$TR GNO 

Voo NC" 

•1NTERNALL Y BONDED DO NOT CONNECT 
ANYTHING TO THIS PIN 

PIN CONNECTIONS 

389 

GENERAL DESCRIPTION 

The BR1941 is a combination Baud Rate Clock Gen
erator and Programmable Divider. It is manufactured in 
N-channel MOS using silicon gate technology. This de
vice is capable of generating 16 externally selected 
clock rates whose frequency is determined by either a 
single crystal or an externally generated input clock. 
The BR1941 is a programmable counter capable of 
generating a division from 2 to (2" -1). 

The BR1941 is available programmed with the most 
used frequencies in data communication. Each 
frequency is selectable by strobing or hard wiring each 
of the two sets of four Rate Select inputs. Other 
frequencies/division rates can be generated by 
reprogramming the Internal ROM coding through a 
MOS mask change. Additionally, further clock division 
may be accomplished through cascading of devices. 
The frequency output is fed into the XTAUEXT input 
on a subsequent device. 

TA 

TB 

TC 

TO 

STT 

XTAU 
EXT2 

+12V---
+5V -+-
GNO ___. 

RA 

RB 

RC 
RO 

OSCILLATOR 

FREQUENCY 
DECODE 

ANO 
CONTROL 

FREQUENCY 
SELECT 

ROM 

DIVIDER 

DIVIDER 

FREQUENCY 
SELECT 

ROM 

8R1941 BLOCK DIAGRAM 

,, 

'R 



PIN DESCRIPTION 

PIN NUMBER SYMBOL 

1 XTAUEXT 1 

2 Vee 

3 fR 

4-7 RA, Re, Re, Ro 

8 

9 
10 

11 

12 

13-16 

17 

18 

NOTE 1 

STA 

voo 
NC 

GNO 

STT 

To, Tc, Ta, TA 

XTAUEXT 2 

(~~=i~ , / r - ; 

VIL-~-~~ 

TsET-UP-----' i----

20V 

8V 

-, 

NAME 

Crystal or 
External Input 1 

Power Supply 

Receiver Output 
Frequency 

Receiver Address 

Strobe-Receiver 
Address 

Power Supply 

No Connection 

Ground 

Strobe-Transmitter 
Address 

Transmitter 
Address 

Transmitter 
Output 
Frequency 

Crystal or 
External 
Input 2 

- THOLD 

• ADDRESS NEED ONLY BE VALID DURING THE LAST 
TPW TIME OF THE INPUT STROBE 

CONTROL TIMING 

ABSOLUTE MAXIMUM RATINGS 

FUNCTION 

This input receives one pin of the crystal package or 
one polarity of the external input. 

+ 5 volt. Supply 

This output runs at a freQuency selected by the 
Receiver Address inputs. 

The logic level on these inputs as shown in Tables 1 
through 6, selects the receiver output frequency, fR-

A high-level input strobe loads the receiver address 
(RA, Re, Re, Ro) into the receiver address register. 
This input may be strobed or hard wired to + 5V. 

+ 12 volt Supply 

Internally bonded. Do not connect anything to this 
pin. 

Ground 

A high-level input strobe loads the transmitter address 
<TA, Ta, Tc, To) into the transmitter address register. 
This input may be strobed or hard wired to + SV. 

The logic level on these inputs, as shown in Tables 1 
through 6, selects the transmitter output frequency, fr. 
This output runs at a frequency selected by the 
Transmitter Address inputs. 

This input receives the other pin of the crystal 
package or the other polarity of the external input. 

CRYSTAL OPERATION EXTERNAL INPUT OPERATION 
8R1141 BA1141 

1] "''>~ 
TTL LJ CT 

74XX - TOTEM POLE OR OPEN COLLECTOR OUTPUT 

CRYSTAUCLOCK OPTIONS 

Positive Voltage on any Pin, with respect to ground + 20.0V 

Negative Voltage on any Pin, with respect to ground - 0.3V 

Storage Temperature (plastic package) -55°C to + 125°C 
(cerdip package and ceramic package) - 65°C to + 150°C 

Lead Temperature (Soldering, 10 sec.) + 325°C 

• Stresses above those listed may cause permanent damage to the device. This is a stress 
rating only and Functional Operation of the device at these or at any other condition 
above those indicated in the operational sections of this specification are not implied. 

390 

0 



) 

ELECTRICAL CHARACTERISTICS 

CT•= o•cto + 1o•c, Vee= +5V ±5%, Voo = + 12V ±5%, unless otherwise noted) 

PARAMETER MIN TYP MAX UNIT COMMENTS 

DC CHARACTERISTICS 

INPUT VOLTAGE LEVELS 
Low-level, V1L 0.8 V See Note1 
High-level, VIH Vcc-1.5 vcc V 

OUTPUT VOLTAGE LEVELS 
Low-level, VOL 0.4 V IOL = 3.2mA 
High-level, VoH Vcc-1.5 4.0 V IOH = 100i,A 

INPUT CURRENT 
Low-level, lIL 0.3 mA VIN = GND, excluding XTAL inputs 

INPUT CAPACITANCE 
All Inputs, CIN 5 10 pf VIN = GND,excludingXTALinputs 

INPUT RESISTANCE 
Crystal Input, RXTAL 1.1 KQ Resistance to ground for 

Pin 1 and Pin 18 

POWER SUPPLY CURRENT 
ICC 20 60 mA 
100 20 70 mA 

AC CHARACTERISTICS TA= +25"C 

CLOCK FREQUENCY See Note2 

PULSE WIDTH (Tpw) 
Clock 50% duty cycle ± 10%. See Note 2 
Receiver strobe 150 oc ns 
Transmitter strobe 150 oc ns 

INPUT SET-UP TIME CT SET-UP) 
Address 50 ns SeeNote3 

OUTPUT HOLD TIME CT HOLD) 
Address 50 ns 

NOTE 1: BR1941 - XTAUEXT inputs are either TTL compatible or crystal compatible. See crystal specification in Ap
plications lnfonnation section. 
All inputs except XTAUEXT have internal pull-up resistors. 

NOTE 2: Refer to frequency option tables for maximum input frequency on XTAUEXT pins. 
Typical Clock Pulse width is 1/2xCL 

NOTE 3: Input set-up time can be decreased to ;,o ns by increasing the minimum strobe width by 50 ns to a total of 200 ns. 

OPERATION 

S-rd Fraquencles 

Choose a Transmitter and Receiver frequency from the 
table below. Program the corresponding address into TA
TD and RA-RD respectively using strobe pulses or by hard 
wiring the strobe and address inputs. 

391 

Non-Standard Fraquencles 

To accomplish non-standard frequencies do one of the 
following: 

1. Choose a crystal that when divided by the BR1941 
generates the desired frequency. 

2. Gascade devices by using the frequency outputs as an 



input to the XTAUEXT inputs of the subsequent 
BR1941. 

3. Consult the factory for possible changes via ROM mask 
reprogramming. 

FREQUENCY OPTIONS 
TABLE 1. CRYSTAL FREQUENCY = 5.0688 MHZ 

Transmit/Receive Baud Duty 
Address Rate Theoretical Actual Percent Cycle 

D C B A (16X Clock) Fr..,. (kHz> Fr-. (kHz> Error % Divisor 
0 0 0 0 50 0.8 0.8 - 50150 6338 
0 0 0 1 75 1.2 1.2 - 50150 4224 
0 0 1 0 110 1.76 1.76 - 50150 2880 
0 0 1 1 134.5 2.152 2.1523 0.016 50150 2355 
0 1 0 0 150 2.4 2.4 - 50150 2112 
0 1 0 1 300 4.8 4.8 - 50150 1056 
0 1 1 0 600 9.6 9.6 - 50150 528 
0 1 1 1 1200 19.2 19.2 - 50150 264 
1 0 0 0 1800 28.8 28.8 - 50150 176 
1 0 0 1 2000 32.0 32.081 0.253 50150 158 
1 0 1 0 2400 38.4 38.4 - 50150 132 
1 0 1 1 3600 57.6 57.6 - 50150 88 
1 1 0 0 4800 76.8 76.8 - 50150 66 
1 1 0 1 7200 115.2 115.2 - 50150 44 
1 1 1 0 9600 153.6 153.6 - 48152 33 
1 1 1 1 19,200 307.2 316.8 3.125 50150 16 

BR1941-00 

T ABLE 2. CLOCK FREQUENCY = 2. 76480 MHZ 

Transmit/Receive Baud Duty 
Address Rate Theoretical Actual Percent Cycle 

D C B A l16X Clockl Fran. fkHz) frlllft. (kHz\ Error % Divisor 
0 0 0 0 50 0.8 0.8 - 50150 3456 
0 0 0 1 75 1.2 1.2 - 50/50 2304 
0 0 1 0 110 1.76 1.76 - 0.006 50150 1571 
0 0 1 1 134.5 2.152 2.152 -0.019 50150 1285 
Q 1 0 0 150 2.4 2.4 - 50150 1152 
0 1 0 1 200 3.2 3.2 - 50150 864 
0 1 1 0 300 4.8 4.8 - 50150 576 
0 1 1 1 600 9.6 9.6 - 50150 288 
1 0 0 0 1200 19.2 19.2 - 50150 144 
1 0 0 1 1800 28.8 28.8 - 50150 96 
1 0 1 0 2000 32.0 32.15 + 0.465 50150 86 
1 0 1 1 2400 38.4 38.4 - 50150 72 
1 1 0 0 3600 57.6 57.6 - 50150 48 
1 1 0 1 4800 76.8 76.8 - 50/50 36 
1 1 1 0 9600 153.6 153.6 - 50150 18 
1 1 1 1 19,200 307.2 307.2 - 50/50 9 

BR1941-02 

TABLE 3. CRYSTAL FREQUENCY = 6.018305 MHZ 

Transmit/Receive Baud Duty 
Address Rate Theoretical Actual Percent Cycle 

D C B A 16X Clockl Fran. fkHzl Fr-. lkHzl Error % Divisor 
0 0 0 0 50 0.8 .7999 0 50150 7523" 
0 0 0 1 75 1.2 1.2000 0 50/50 5015" 
0 0 1 0 110 1.76 1.7597 0 50150 3420 
0 0 1 1 134.5 2.152 2.1517 0 50150 2797" 
0 1 0 0 150 2.4 2.3996 0 50150 2508 
0 1 0 1 200 3.2 3.1995 0 50150 1aa1 • 
0 1 1 0 300 4.8 4.7993 0 50150 1254 
0 1 1 1 600 9.6 9.5986 0 50/50 627" 
1 0 0 0 1200 19.2 19.2279 +0.14 50150 31.3" 
1 0 0 1 1800 28.8 28.7959 0 50150 209" 
1 0 1 0 2000 32.0 32.0125 0 50150 186 
1 0 1 1 2400 38.4 38.3334 -0.17 50150 15, ♦ 

1 1 0 0 3600 57.6 57.8687 +0.46 50150 104 
1 1 0 1 4800 76.8 77.1583 +0.46 50150 78 
1 1 1 0 9800 153.6 154.3166 +0.46 50150 39" 
1 1 1 1 19,200 307.2 300.9175 -2.04 50150 20 

BR1941-03 

392 

0 



) 

\ ., 

TABLE 4. CLOCK FREQUENCY = 5.52960 MHZ 

Transmit/Receive Baud 
Address Rate Theoretical Actual 

D C B A (16X Clock) Fron. (kHz) Freq. (kHz) 
0 0 0 0 50 1.6 1.6 
0 0 0 1 76 2.4 2.4 
0 0 1 0 110 3.52 3.52 
0 0 1 1 134.5 4.304 4.303 
0 1 0 0 150 4.8 4.8 
0 1 0 1 200 6.4 6.4 
0 1 1 0 300 9.6 9.6 
0 1 1 1 600 19.2 19.2 
1 0 0 0 1200 38.4 38.4 
1 0 0 1 1800 57.6 57.6 
1 0 1 0 2000 64.0 64.3 
1 0 1 1 2400 76.8 76.8 
1 1 0 0 3600 115.2 115.2 
1 1 0 1 4600 153.6 153.6 
1 1 1 0 9600 307.2 307.2 
1 1 1 1 19 200 614.4 614.4 

BR1941-04 

TABLE 5. CRYSTAL FREQUENCY = 4.9152 MHZ 

Transmit/Receive Baud 
Address Rate Theo,elical Actual 

D C B A (32X Clockl Freq, (kHz) Fron. (kHz) 
0 0 0 0 50 0.8 0.8 
0 0 0 1 75 1.2 1.2 
0 0 1 0 110 1.76 1.7598 
0 0 1 1 134.5 2.152 2.152 
0 1 0 0 150 2.4 2.4 
0 1 0 1 300 4.8 4.8 
0 1 1 0 600 9.6 9.6 
0 1 1 1 1200 19.2 19.2 
1 0 0 0 1800 28.8 28.7438 
1 0 0 1 2000 32.0 31.9168 
1 0 1 0 2400 38.4 38.4 
1 0 1 1 3800 57.6 57.8258 
1 1 0 0 4800 76.8 76.8 
1 1 0 1 7200 115.2 114.306 
1 1 1 0 9600 153.6 153.6 
1 1 1 1 19,200 307.2 307.2 

BR1941-05 

TABLE 6. CRYSTAL FREQUENCY = 5.0688 MHZ 

Transmit/Receive Baud 
Address Rate Theoretical Actual 

D C B A 132X Clockl F-. lkHzl Fr-. lkHzl 
0 0 0 0 50 1.6 1.6 
0 0 0 1 75 2.4 2.4 
0 0 1 0 110 3.52 3.52 
0 0 1 1 134.5 4.304 4.303 
0 1 0 0 150 4.8 4.8 
0 1 0 1 200 6.4 6.4 
0 1 1 0 300 9.6 9.6 
0 1 1 1 600 19.2 19.2 
1 0 0 0 1200 38.4 38.4 
1 0 0 1 1800 57.6 57.6 
1 0 1 0 2400 76.8 76.8 
1 0 1 1 3800 115.2 115.2 
1 1 0 0 4800 153.6 153.6 
1 1 0 1 7200 230.4 230.4 
1 1 1 0 9600 307.2 298.16 
1 1 1 1 19,200 614.4 633.6 

*When the duty cycle ,s not exactly 50% 11 Is 50% .:t: 10% 

BR1941-06 

393 

Duty 
Percent Cycle 

Error % Divisor 
- 50/50 3456 
- 50/50 2304 

-0.006 50/50 1571 
-0.019 50/50 1285 

- 50/50 1152 
- 50/50 864 
- 50/50 576 
- 50/50 288 
- 50/50 144 
- 50/50 96 

+0.465 50/50 86 
- 50/50 72 - 50/50 48 
- 50/50 38 
- 50/50 18 
- 50/50 9 

Duty 
Percent Cycle 

Error % Divisor 
- 50/50 6144 
- 50/50 4096 

-0.01 . 2793 
- 50/50 2284 
- 50/50 2048 
- 50/50 1024 
- 50/50 512 
- 50/50 256 

-0.19 . 171 
-0.26 50/50 154 
- 50/50 128 

0.39 . 85 
- 50/50 64 

-0.77 . 43 
- 50/50 32 
- 50/50 16 

Duty 
Percent Cycle 

Error % Divisor 
- 50/50 3168 
- 50/50 2112 
- 50/50 1440 

.026 50/50 1178 - 50/50 1056 
- 50/50 792 
- 50/50 528 
- 50/50 264 
- 50/50 132 
- 50/50 88 
- 50/50 86 
- 50/50 44 
- . 33 
- 50/50 22 

2.941 . 17 
3.125 50/50 8 



CRYSTAL SPECIFICATIONS 

User must specify termination (pin, wire, othe~ 
Frequency - See Tables 1-6. 
Temperature range o·c to + 1o·c 
Series resistance .;; 50Q 
Series resonant 
Overall tolerance ± .01 % 

CRYSTAL MANUFACTURERS (Partial List) 

American Time Products Div. 
Frequency Control Products, Inc. 
61-20 Woodside Ave. 
Woodside, New York 11377 
(212) 458-5811 

Billey Electric Co. 
2545 Grandview Blvd. 
Erie, Pennsylvania 16508 
(814) 838-3571 

M-tron Ind. Inc. 
P.0.Box630 
Yankton, South Dakota 57078 
(605) 665-9321 

Erie Frequency Control 
453 Lincoln St. 
calisle, Pennsylvania 17013 
(714) 249-2232 

APPLICATIONS INFORMATION 

OPERATION WITH A CRYSTAL 

The BR1941 Baud Rate Generator may be driven by either a 
crystal or TTL level clock. When using a crystal, the wave
form that appears at pins 1 (XTAUEXT 1) and 18 (XTAUEXT 
2) does not conform to the normal TTL limits of VIL.;; 0.8V 
and VIH ;. 2.0V. Figure 1 illustrates a typical crystal 
waveform when connected to a BR1941. 

Since the D.C. level of the waveform causes the least 
positive point to typically be greater than 0.8V, the BR1941 
is designed to look for an edge, as opposed to a TTL level. 
The XT AU EXT logic triggers on a rising edge of typically 1V 
in magnitude. This allows the use of a crystal without any 
additional components. 

OPERATIONS WITH TTL LEVEL CLOCK 

With clock frequencies in the area of 5 MHz, significant 
overshoot and undershoot ("ringing") can appear at pins 1 
and/or 18. The BR1941, may, at times, be triggered on a 
rising edge of an overshoot or undershoot waveform, 
causing the device to effectively "double-trigger." This 
phenomenon may result as a twice expected baud rate, or 
as an apparent device failure. Figure 2 shows a typical 
waveform that exhibits the "ringing" problem. 

The design methods required to minimize ringing include 
the following: 

1. Minimize the P.C. trace length. At 5 MHz, each inch of 
trace can add significantly to overshoot and undershoot. 

2. Match impedances at both ends of the trace. For 
example, a series resistor near the BR1941 may be 
helpful. 

3. A unifonn impedance is important. This can be ac
complished through the use of: 

394 

a parallel ground lines 
b. evenly spaced ground lines crossing the trace on the 

opposite side of PC board 
c. an inner plane of ground, e.g., as in a four layered PC 

board. 

In the event that ringing exists on an already finished 
board, several techniques can be used to reduce it. These 
are: 

1. Add a series resistor to match impedance as shown in 
Figure 3. 

2. Add pull-up/pull-down resistor to match impedance, as 
shown in Figure 4. 

3. Add a high speed diode to clamp undershoot, as shown 
in Figure 5. 

The method that is easiest to implement in many systems 
is method 1, the series resistor. The series resistor will 
cause the O.C. level to shift up, but that does not cause a 
problem since the BR1941 is triggered by an edge, as 
opposed to a TTL level. 

The BR1941 Baud Rate Generator can save both board 
space and cost in a communications system. By choosing 
either a crystal or a TTL level clock, the user can minimiZe 
the logic required to provide baud rate clocks in a given 
design. 

POWER LINE SPIKES 

Voltage transients on the AC power line may appear on the 
DC power output. If this possibility exists, it is suggested 
that one by-pass capacitor is used between + 5V and GNO 
and another between + 12V and GND. 

• 

0 



j 

• 

VOi.TS 

'" " 
" 

. ., 
" VOLTS 

.,, 

.,, 
" . " 
'' 

-" " " " ··-

Figure 1 TYPICAL CRYSTAL WAVEFORM Figure 2 TYPICAL "RINGING" WAVEFORM 

R1 

BR1941 

R2 

1Bf----' 
TyPtcal Values 

R1 = R2.,, 3311 

Figure 3 SERIES RESISTOR TO MATCH IMPEDANCE 

+tN 

R1 

R2 

1e1---~ 

BR1941 

Typical Values 
R1=A3=-'7K 
R2=R4-=33K 

Figure 4 PULL-UP/PULL-DOWN RESISTORS TO MATCH IMPEDANCE 

181-------+--' 

BR1941 

Figure 5 HIGH-SPEED DIODE TO CLAMP UNDERSHOOT 

See page 725 for ordering information . 

m 
:a .... 
co 
~ .... 
~ .... 
-9 

··~ 



Information furnished by Western 0,911a1 Corporation 1s beheved to be accurate and rehable However no respons1b1hty 1s assumed by Western D1g1tal 
Corporation for its use nor tor any 1nfnngements of patents or other rights of third parties which may result from ,ts use No hcense 1s granted by 
1mplicallon or otherwise under any patent or patent rights of Western 0191tal Corporation Western D19,tal Corporat1on reserves the right to change 
spec1f1cat1ons at anytime wllhout notice 

396 Prtnled ,n US A 

0 



) 

., 

WESTERN DIGITAL 
C 0 R p 0 R A T I 0 N 

WD1943(8116)/WD1945(8136) Dual Baud Rate Clock 

FEATURES 
• 16 SELECTABLE BAUD RATE CLOCK FREQUENCIES 

•OPERATES WITH CRYSTAL OSCILLATOR OR EX-
TERNALLY GENERATED FREQUENCY INPUT 

•ROM MASKABLE FOR NON-STANDARD FREQUENCY 
SELECTIONS 

•INTERFACES EASILY WITH MICROCOMPUTERS 

• OUTPUTS A 50% DUTY CYCLE CLOCK WITH O 01 % 
ACCURACY 

• 6 DIFFERENT FREQUENCY/DIVISOR PAIRS 
AVAILABLE 

•SINGLE + 5V POWER SUPPLY 

•COMPATIBLE WITH BR1941 

•TTL, MOS COMPATIBILITY 

• WD1943 IS PIN COMPATIBLE TO THE COM8116 
• WD19i5 IS PIN COMPATIBLE TO THE COM8136 AND 

COM5036 (PIN 9 ON WD1945 IS A NO CONNECT) 

XTAUEXT 1 XTAUEXT 2 

+5V Ir 

'" TA 

"• Ta 

"• Tc 

Re To 

Ro STT 

STA GNO 

NC NC!1943J 

1/4 !1945) 

PIN CONNECTIONS 

397 

GENERAL DESCRIPTION 

The WD1943/451s an enhanced version of the BR1941 Dual 
Baud Rate Clock The WD1943/45 1s a combmat,on Baud 
Rate Clock Generator and Programmable D1v1der It Is 
manufactured m N-channel MOS using s1hcon gate 
technology This device Is capable of generating 16 ex
ternally selected clock rates whose frequency Is deter
mined by either a single crystal or an externally generated 
input clock The W01943/45 1s a programmable counter 
capable of generating a d1v1s1on by any integer from 4 to 
215 - 1, mclus,ve 

The WD1943145 1s available programmed with the most 
used frequencies m data communicat1on Each frequency 
1s selectable by strobing or hard w1nng each of the two sets 
of four Rate Select mputs Other frequenc1es/d1v1s1on rates 
can be generated by reprogramming the internal ROM 
coding through a MOS mask change Add1bonally, further 
clock d1v1s1on may be accomplished through cascading of 
devices The frequency output Is fed into the XTAUEXT 
input on a subsequent device 

The W01943145 can be driven by an external crystal or by 
TTL logic 

TA 
FREQUENCY TB 

SELECT 
TC ROM 
TO 

STT--

XTAU 
EXT 1 

'T OSCILLATOR OIVIOER 
XTAU 
EXT 2 

1/4 
(19451 

+sv----. 
GNO--+ OIVIOER 'R 

RA 
FREQUENCY FREQUENCY RB OECOOE SELECT 

RC ANO ROM 
RD CONTROL 

BLOCK DIAGRAM 

:! 
C .... 
i .... .... 
$ -:e 
C .... 
i .... 
~ 



PIN DESCRIPTION 

PIN NUMBER SYMBOL NAME FUNCTION 

1 XTAUEXT 1 

2 Vee 
3 IR 

4-7 RA, Re, Re, Ro 

8 STR 

9 NC 

10 NC(1943) 
1/4 (1945) 

11 GNO 

12 STT 

13-16 To, Tc, Te, TA 

17 tr 

18 XTAUEXT2 

}{ ,,,,.. 

"" STROSE 
!STRISTTI 

'" 
TseruP 
SEE NOTE 1 ,4-

PAGE 3 

"" 

Crystal or 
External Input 1 

Power Supply 

Receiver Output 
Frequency 

Receiver Address 

Strobe-Receiver 
Address 

No Connection 

No Connection 
freq/4 Output 

Ground 

Strobe-Transmitter 
Address 

Transmitter 
Address 

Transmitter 
Output 
Frequency 

Crystal or 
External 
lnput2 

} 

This input receives one pin of the crystal package or one 
polarity of the external input. 

+ 5 volt Supply 

This output runs at a frequency selected by the Receive, 
Address inputs. 

The logic level on these inputs as shown in Table 1 thru 6, 
selects the receiver output frequency, fR. 

A high-level input strobe loads the receiver address (RA, Re, 
Re, Ro) into the receiver address register. This input may bE 
strobed or hard wired to + 5V. 

No Internal Connection 

No Internal Connection 
XTAL 1 input freq divided by four. 

Ground 

A high-level input strobe loads the transmitter address (TA, 
Te, Tc, To) into the transmitter address register. This input 
may be strobed or hard wired to + 5V. 

The logic level on these inputs, as shown in Table 1 thru 6, 
selects the transmitter output frequency, fr. 
This output runs at a frequency selected by the TransmitteI 
Address inputs. 

This input receives the other pin of the crystal package or the 
other polarity of the external input. 

CRYSTAL OPERATION 
WD1943/45 

EXTERNAL INPUT OPERATION 
WD1943145 

~",.,,~ ""~ um LJ"' LJ 
'ADDRESS NEEDONL Y BE VALID DUFIING THE LAST 
TPW TIME OF THE INPUT STROBE 

7UX TOTEM POLE OR OPEN COLLECTOflOUTPUT 

CONTROL TIMING CRYSTAUCLOCK OPTIONS 

ABSOLUTE MAXIMUM RATINGS 

Positive Voltage on any Pin, with respect to ground + 7.0V 

Negative Voltage on any Pin, with respect to ground -0.3V 

Storage Temperature (plastic package) - 55'C to + 125'C 
(Cerdip package and Ceramic package) -65'C to + 150'C 

Lead Temperature (Soldering, 10 sec.) + 325'C 

•stresses above those listed may cause permanent damage to the device. This is a stress 
rating only and Functional Operation of the device at these or at any other condition 
above those indicated in the operational sections of this specification are not implied. 

398 

• 

0 

-



) 

., 

ELECTRICAL CHARACTERISTICS . !TA = o·c to + 70"C, Vee= + 5V ± 5% standard.) 

PARAMETER MIN TYP MAX UNIT COMMENTS 

DC CHARACTERISTICS 

INPUT VOLTAGE LEVELS 
Low-level, VIL 0.8 V See Note 1 
High-level, VIH 2.0 Vee V 

OUTPUT VOLTAGE LEVELS 
Low-level, VoL 0.4 V IOL = 3.2mA 
High-level, VoH Vcc-1.5 4.0 V IOH = 100µA 

INPUT CURRENT -10 µA VIN = Vee STA (8) and sn (12) 
High-level, lIH 10 µA VIN = GND Only 
Low-level, lIL 300 µA VIN = GND (All inputs except 

XTAL, STA and ST!) 
Low-level, lIL 10 µa VIN = GNDSTR,STT 

INPUT CAPACITANCE 
All Inputs, C1N 5 10 pf VIN = GND, excluding XTAL inputs 

EXT. INPUT LOAD 4 5 Series 7400 unit loads 

INPUT RESISTANCE 
Crystal Input, RXTAL 1.1 KQ Resistance to ground for 

Pin 1 and Pin 18 
POWER SUPPLY CURRENT 40 80 mA 
ICC 

AC CHARACTERISTICS TA= +25°C 

CLOCK FREQUENCY SeeNote2 

PULSE WIDTH !TPW) 
Clock 50% Duty Cycle ± 10%. See Note 2 
Receiver strobe 150 DC ns SeeNote3 
Transmitter strobe 150 DC ns SeeNote3 

INPUT SET-UP TIME !TSET-UP) 
Address 50 ns SeeNote3 

OUTPUT HOLD TIME !THOLO) 
Address 50 ns 

STROBE TO NEW FREQUENCY 
DELAY 6 CLK 

NOTE 1: XTAUEXT inputs are either TTL compatible or crystal compatible. See crystal specification in 
Applications Information section. 
All inputs except XT AL, STA and STT have internal pull-up resistors. 

NOTE 2: Refer to frequency option tables for maximum input frequency on XTAUEXT pins. 
Typical clock pulse width is 1/2 x CL 

NOTE 3: Input set-up time can be decreased to >O ns by increasing the minimum strobe width (50 ns) to a total of 200 ns. 
T A-0 and RA-0 have internal pull-up resistors. 

OPERATION 

Standard Fn,quencles 

Choose a Transmitter and Receiver frequency from the 
table below. Program the corresponding address into TA-TD 
and RA-RD respectively using strobe pulses or by hard 
wiring the strobe and address inputs. 

399 

Non-Standard Fn,quencies 

To accomplish non-standard frequencies do one of the 
following: 

1. Choose a crystal that when divided by the WD1943 
generates the desired frequency. 

2. Cascade devices by using the frequency outputs as an 
input to the XTAUEXT inputs of the subsequent 
WD1943/45. 

3. Consult the factory for possible changes via ROM mask 
reprogramming . 



FREQUENCY OPTIONS 

TABLE 1. CRYSTAL FREQUENCY = 5.0688 MHZ 

Transmit/Receive Baud Duty 
Addreas Rate Theoretlcal Actual Percent Cycle 

D C B A 118X Clock\ F--. lkHD F-. lkHzl Error % Dhllaor 
0 0 0 0 50 0.8 0.8 - 50/50 8336 
0 0 0 1 75 1.2 1.2 - 50/50 4224 
0 0 1 0 110 1.76 1.76 - 50/50 2880 • 0 0 1 1 134.5 2.152 2.1523 0.016 50/50 2355 
0 1 0 0 150 2.4 2.4 - 50/50 2112 
0 1 0 1 300 4.8 4.B - 50/50 1056 
0 1 1 0 600 9.6 9.6 - 50/50 526 
0 1 1 1 1200 19.2 19.2 - 50/50 264 
1 0 0 0 1600 28.8 26.8 - 50/50 176 
1 0 0 1 2000 32.0 32.081 0.253 50/50 158 
1 0 1 0 2400 38.4 38.4 - 50/50 132 
1 0 1 1 3600 57.6 57.6 - 50/50 88 
1 1 0 0 4800 76.8 76.8 - 50/50 66 
1 1 0 1 7200 115.2 115.2 - 50/50 44 
1 1 1 0 9600 153.6 153.6 - 48/52 33 
1 1 1 1 19 200 307.2 316.8 3.125 50/50 16 

WD1943-00 or WD1945-00 

TABLE 2. CLOCK FREQUENCY = 2.76480 MHZ 

Transmit/Receive Baud Duty 
Address Rate Theor■Ucal Actual Percent Cycle 

D C B A 118X C1"""' F-. lkHzl F-. lkHzl Error % DIYIIOf 
0 0 0 0 50 0.8 0.8 - 50/50 3456 
0 0 0 1 75 1.2 1.2 - 50/50 2304 
0 0 1 0 110 1.76 1.76 -0.006 50/50 1571 
0 0 1 1 134.5 2.152 2.152 -0.019 50/50 1285 
0 1 0 0 150 2.4 2.4 - 50/50 1152 
0 1 0 1 200 3.2 3.2 - 50/50 664 
0 1 1 0 300 4.8 4.8 - 50/50 576 
0 1 1 1 600 9.6 9.6 - 50/50 288 
1 0 0 0 1200 19.2 19.2 - 50/50 144 
1 0 0 1 1600 26.8 26.8 - 50/50 96 
1 0 1 0 2000 32.0 32.15 +0.465 50/50 66 
1 0 1 1 2400 38.4 38.4 - 50/50 72 0 
1 1 0 0 3600 57.6 57.6 - 50/50 48 
1 1 0 1 4800 76.8 76.8 - 50/50 36 
1 1 1 0 9600 153.6 153.6 - 50/50 18 
1 1 1 1 19200 307.2 307.2 - 50/50 9 

WD1943-02 or WD1945-02 

TABLE 3. CRYSTAL FREQUENCY = 6.018305 MHZ 

Transmit/Receive Baud Duty 
Addreu Rate Theoretic■! Actual Percent Cycle 

D C B A 118X Clockl F-. l>Hzl F-. (kHz! Error % Dfvlaor 
0 0 0 0 50 0.8 .7999 0 50/50 7523• 
0 0 0 1 75 1.2 1.2000 0 50/50 5015* 
0 0 1 0 110 1.76 1.7597 0 50/50 3420 
0 0 1 1 134.5 2.152 2.1517 0 50/50 2797• 
0 1 0 0 150 2.4 2.3996 0 50/50 2508 
0 1 0 1 200 3.2 3.1995 0 50/50 1881· 
0 1 1 0 300 4.8 4.7993 0 50/50 1254 
0 1 1 1 600 9.6 9.5966 0 50/50 527• 
1 0 0 0 1200 19.2 19.2279 +0.14 50/50 31.3° 
1 0 0 1 1800 26.8 28.7959 0 50/50 209• 
1 0 1 0 2000 32.0 32.0125 0 50/50 188 
1 0 1 1 2400 38.4 38.3334 -0.17 50/50 157• 
1 1 0 0 3600 57.6 57.6687 +0.46 50150 104 
1 1 0 1 4800 76.8 77.1583 +0.46 50/50 78 
1 1 1 0 9800 153.6 154.3166 +0.46 50150 39• 
1 1 1 1 19.200 307.2 300.9175 -2.04 50150 20 

WD1943-03 or WD1945-03 

400 



TABLE 4. CLOCK FREQUENCY = 5.52960 MHZ 

Transmit/Receive Baud 
AddreH Rate Theoretical Actual 

D C B A (32X Clockl Fr-. lkHzl F-. lkHzl 
0 0 0 0 50 1.6 1.6 
0 0 0 1 75 2.4 2.4 
0 0 1 0 110 3.52 3.52 
0 0 1 1 134.5 4.304 4.303 
0 1 0 0 150 4.8 4.8 
0 1 0 1 200 6.4 6.4 
0 1 1 0 300 9.6 9.6 
0 1 1 1 60D 19.2 19.2 
1 0 0 0 1200 38.4 38.4 
1 0 0 1 1800 57.6 57.6 
1 0 1 0 2000 64.0 64.3 
1 0 1 1 2400 76.8 76.8 
1 1 0 0 3600 115.2 115.2 
1 1 0 1 4800 153.6 153.6 
1 1 1 0 9600 307.2 307.2 
1 1 1 1 19,200 614.4 614.4 

WD1943-04 or WD1945-04 

TABLE 5. CRYSTAL FREQUENCY = 4.9152 MHZ 

Trenamlt/Recetve Baud 
AddreH Rat■ Thooretlc■ I Actual 

D C B A 111X Clockl F-. (kHz! FNn. lkHzl 
0 0 0 0 50 0.8 0.8 
0 0 0 1 75 1.2 1.2 
0 0 1 0 110 1.76 1.7598 
0 0 1 1 134.5 2.152 2.152 
0 1 0 0 150 2.4 2.4 
0 1 0 1 300 4.8 4.8 
0 1 1 0 60D 9.6 9.6 
0 1 1 1 1200 19.2 19.2 
1 0 0 0 1800 28.8 28.7438 
1 0 0 1 2000 32.0 31.9168 
1 0 1 0 2400 38.4 38.4 
1 0 1 1 3600 57.6 57.8256 
1 1 0 0 4800 76.8 76.8 
1 1 0 1 7200 115.2 114.306 
1 1 1 0 9600 153.6 153.6 
1 1 1 1 19200 307.2 307.2 

WD1943-05 or WD1945-05 

TABLE 6. CRYSJAL FREQUENCY = 5.0688 MHZ 

Tr1n1mlt/Recelve laud 
Addre■a Rate Theoretlcal Actual 

D C B A (32X Clockl F-. lkHzl F-. lkHzl 
0 0 0 0 50 1.6 1.6 
0 0 0 1 75 2.4 2.4 
0 0 1 0 110 3.52 3.52 
0 0 1 1 134.5 4.304 4.303 
0 1 0 0 150 4.8 4.8 
0 1 0 1 200 6.4 6.4 
0 1 1 0 300 9.6 9.6 
0 1 1 1 60D 19.2 19.2 
1 0 0 0 1200 38.4 38.4 
1 0 0 1 1800 57.6 57.6 
1 0 1 0 2400 76.8 76.8 
1 0 1 1 3600 115.2 115.2 
1 1 0 0 4800 153.6 153.6 
1 1 0 1 7200 230.4 230.4 
1 1 1 0 9600 307.2 298.16 
1 1 1 1 19200 614.4 633.6 

•when the duty cycle is not exactly 50% it is 50% :t: 10% 

WD1943-06 or WD1945-06 ., 
401 

Duty 
Percent Cycle 

Error % 

- 50/50 
- 50/50 

- 0.006 50/50 
-0.019 50/50 - 50/50 - 50/50 - 50/50 - 50/50 

- 50/50 - 50/50 
+0.465 50/50 

- 50/50 - 50/50 
- 50/50 - 50/50 
- 50/50 

Duty 
Percent Cycle 

Error % 
- 50/50 
- 50/50 

-0.01 . 
- 50/50 - 50/50 - 50/50 - 50/50 
- 50/50 

-0.19 . 
-0.26 50/50 - 50/50 
0.39 . 
- 50/50 

-0.77 . 
- 50/50 
- 50/50 

Duty 
Percent Cycle 

Error % 

- 50/50 - 50/50 - 50/50 
.026 50/50 
- 50/50 - 50/50 - 50/50 - 50/50 - 50/50 - 50/50 - 50/50 
- 50/50 . -- 50/50 

2.941 . 
3.125 50/50 

Dlvleor 
3456 
2304 
1571 
1285 
1152 
864 
576 
288 
144 
96 
86 
72 
48 
36 
18 
9 

DIYloor 
6144 
4096 
2783 
2284 
2048 
1024 
512 
256 
171 
154 
128 
85 
64 
43 
32 
16 

Dlvleor 
3188 
2112 
1440 
1178 
1056 
792 
528 
264 
132 
88 
86 
44 
33 
22 
17 
8 

~ 
C ... 
I 
0: ... ... 
~ 
~ 
C .... 

I .... 
1 



APPLICATIONS INFORMATION 

OPERATION WITH A CRYSTAL 

The WD1943/45 Baud Rate Generator may be driven by 
either a crystal or TTL level clock. When using a crystal, the 
waveform that appears at pins 1 (XTAUEXT 1) and 18 
(XTAUEXT 2) does not conform to the normal TTL limits of 
VIL .; 0.8V and VIH ;, 2.0V. Figure 1 illustrates a typical 
crystal waveform when connected to a WD1943145. 

Since the D.C. level of the waveform causes the least 
positive point to typically be greater than 0.8V, the 
WD1943/45 is designed to look for an edge, as opposed to a 
TTL level. The XTAUEXT logic triggers on a rising edge of 
typically 1V in magnitude. This allows the use of a crystal 
without any additional components. 

OPERATIONS WITH TTL LEVEL CLOCK 

With clock frequencies in the area of 5 MHz, significant 
overshoot and undershoot ("ringing") can appear at pins 1 
and/or 18. The clock oscilator may, at times be triggered on 
a rising edge of an overshoot or undershoot waveform, 
causing the device to effectively "double-trigger." This 
phenomenon may result as a twice expected baud rate, or 
as an apparent device failure. Figure 2 shows a typical 
waveform that exhibits the "ringing" problem. 

The design methods required to minimize ringing include 
the following: 

1. Minimize the P.C. trace length. At 5 MHz, each inch of 
trace can add significantly to overshoot and undershoot. 

2. Match impedances at both ends of the trace. For 
example, a series resistor near the device may be 
helpful. 

3. A uniform impedance is important This can be ac
complished through the use of: 
a parallel ground lines 
b. evenly spaced ground lines crossing the trace on the 

opposite side of PC board 
c. an inner plane of ground, e.g., as in a four layered PC 

board. 

In the event that ringing exists on an already finished 
board, several techniques can be used to reduce it. These 
are: 

1. Add a series resistor to match impedance as shown in 
Figure 3. 

2. Add pull-up/pull-down resistor to match impedance, as 
shown in Figure 4. 

3. Add a high speed diode to clamp undershoot, as shown 
in Figure 5. 

402 

The method that is easiest to implement in many systems 
is method 1, the senes resistor. The series resistor will 
cause the D.C. level to shift up, but that does not cause a 
problem since the OSC is triggered by an edge, as opposed 
to a TTL level. 

The 1943145 Baud Rate Generator can save both board 
space and cost in a communications system. By choosing 
either a crystal or a TTL level clock, the user can minimize 
the logic required to provide baud rate clocks in a given 
design. 

POWER LINE SPIKES 

Voltage transients on the AC power line may appear on the 
DC power output. If this possibility exists, it is suggested 
that a by-pass capacitor is used between + 5V and GND. 

CRYSTAL SPECIFICATIONS 

User must specify termination (pin, wire, other) 
Frequency - See Tables 1-6. 
Temperature range 0°c to + 70°C 
Series resistance < 502 
Series resonant 
Overall tolerance ± 0.01% 

CRYSTAL MANUFACTURERS(Partlal List) 

American Time Products Div. 
Frequency Control Products, Inc. 
61-20 Woodside Ave. 
Woodside, New York 11377 
(213)458-5811 

Bliley Electric Co. 
2545 Grandview Blvd. 
Erie, Pennsylvania 16508 
(814) 838-3571 

M-tron Ind. Inc. 
P.O. Box630 
Yankton, South Dakota 57078 
(605) 665-9321 

Erie Frequency Control 
453 Lincoln St. 
Galisle, Pennsylvania 17013 
(714) 249-2232 

-- -- --·-·--------------------

0 

-



j 

) 

' ., 

VOLTS 

.,, 
" . " 
" VOLlS 

.,, 
" . " 
" . " 
" 

-" 
" " " '·~ 

Figure 1. TYPICAL CRYSTAL WAVEFORM Figure 2. TYPICAL "RINGING" WAVEFORM 
from TTL INPUT 

,, 

W01943145 

,, 

.. 1---~ 
Typ,cat Values 
Fl!= i:ij~J:JQ 

Figure 3. SERIES RESISTOR TO MATCH IMPEDANCE 

... 
" .. 

WD1943145 

" 
" 

"1-----' 
Typ,cal va•ues 
Fl1: R3 = 27K 
Fl2=R4=l3K 

Figure 4. PULL-UP/PULL-DOWN RESISTORS TO MATCH IMPEDANCE 

.. ~-------
Figure s. HIGH.SPEED DIODE TO CLAMP UNDERSHOOT 

See page 725 for ordering information . 

403 

C 
C 

IC: 

J 
i 
,g 
C 
C ,_ 
IC: 

1 
1 



lnformat1on furnished by Western 01g1tal Corporation 1s believed to be accurate and reliable However, no respons1b1hty 1s assumed by Western D1g1tal 
Corporation !or ,ts use, nor lor any ,nfnngements of patents or other rights of third parties wh,ch may result lrom its use No hcense 1s granted by 
,mphcallon or otherwise under any patent or palent ngh1s of Western o,g,tal Corporatton Western D1g1tal Corporation reserves the right to change 
spec1flcat1ons at anytime without no11ce 

404 Pnnted on U S A 

I 

0 



WESTERN DIGITAL 
CORPORATION 

FD179X-02 
Floppy Disk Fonnatter/Controller Family 

FEATURES 
• TWO VFO CONTROL SIGNALS - RG & VFOE 
• SOFT SECTOR FORMAT COMPATIBILITY 
• AUTOMATIC TRACK SEEK WITH VERIFICATION 
• ACCOMMODATES SINGLE AND DOUBLE DENSITY 

FORMATS 
IBM 3740 Single Density (FM) 
IBM System 34 Double Density (MFM) 
Non IBM Fonnat for Increased capacity 

• READMODE 
Single/Multiple Sector Read with Automatic Search or 

Entire Track Read 
Selectable 128,256, 512 or 1024 Byle Sector Lengths 

• WRITEMODE 
Single/Multiple SectorWrite with Automatic Sector 

Search 
Entire Track Write for Diskette Fonnalling 

• SYSTEM COMPATIBILITY 
Double Buffering of Data 8 Bil Bi-Directional Bus for 

Data, Control and Status 
OMA or Programmed Data Transfers 
All Inputs and Outputs are TTL Compatible 
O~hip Track and Sector Registers/Comprehensive 

Status Information 

NC 

"' "" jif ., ., 
.. DALO 

DAL1 
0..:, 

DAi"l 
DAU 
DAL! 

EARLY 

LATE 

" 

vooc+ 12v1 
INTRO 

ORO 

JRj(A••· -.. 
l'lioo 
~ 

Cc, 

"" mr 
1GND1Vss 21 Vccl•SV) ~-----' 

•179113:RG 179517: sso 
••179317 TRUE BUS 

• .. 179214 OPEN 

PIN DESIGNATION 

C 
0 
M 
p 
u 
T 
E 
A 

I 
N 
T 
E 
A 
F 
A 
C 
E 

... 

10K 

• PROGRAMMABLECONTROLS 
Selectable Track to Track Stepping Time 
Side Select Compare 

• INTERFACES TOWD1691 DATA SEPARATOR 
• WINDOW EXTENSION 
• INCORPORATES ENCODING/DECODING AND 

ADDRESS MARK CIRCUITRY 
• FD1792/4 IS SINGLE DENSITY ONLY 
• FD179517 HAS A SIDE SELECT OUTPUT 

179X-02 FAMILY CHARACTERISTICS 

FEATURES 1791 1792 1793 1794 1795 

Slnale Density (FM) X X X X X 
Double Density (MFM' X X X 
True Data Bus X X 
lnvened Data Bus X X X 
Write Precomp X X X X X 
Side Selection Output X 

APPLICATIONS 

a• FLOPPY ANDS¼' MINI FLOPPY CONTROLLER 
SINGLE OR DOUBLE DENSITY 
CONTROLLER/FORMATTER 

RAWAEAO 
DATAf8) :, 

RCLK 

•• RGISSO 

., LATE 
F cs EARLY 
L 

RE WO 0 

l·· 
p 

WE p 
y 

MA 179X 

FLOPPY OISK WFIVF0E D 

CONTROLLER I 

FORMATTER wPiiT s 
K 

•5V 
WG 

I 
I IP N 

TAOO T 
E 

,>IOK READY A 

• '• TG'3 
F 
A 

ORO STEP C 
E 

INTRO OIRC 

CLK 

HLO I :~ HLT I ONE SHOT I I' ODEN Vss (If USEOI 
voo vcc 

.. l I I T 
.. v 

+12 +sv 

FD179X SYSTEM BLOCK DIAGRAM 

1797 

X 
X 
X 

X 
X 

1 November, 1982 



PIN OUTS 

PIN 
NUMBER PIN NAME SYMBOL FUNCTION 

1 NO CONNECTION NC Pin 1 is internally connected to a back bias generator and 
must be left open by the user. 

19 MASTER RESET MR A logic low (50 microseconds min.) on this input resets the 
device and loads HEX 03 into the command register. The Not 
Ready (Status Bit 7) is reset during MR ACTIVE. When Ml'i is 
brought to a logic high a RESTORE Command is executed, 
regardless of the state of the Ready signal from the drive. 
Also, HEX 01 is loaded into sector register. 

20 POWER SUPPLIES Vss Ground 

21 Voc +5V o:5% 

40 Voo +12V o:5% 

COMPUTER INTERFACE 

2 WRITE ENABLE WE A logic low on this input gates data on the DAL into the 
selected register when CS is low. 

3 CHIP SELECT cs A logic low on this Input selects the chip and enables 
computer communication with the device. 

4 READ ENABLE RE A logic low on this input controls the placement of data from a 
selected register on the DAL when CS is low. 

5,6 REGISTER SELECT LINES A0,A1 These Inputs select the register to receive/transfer data on the 
DAL lines under RE and WE control: 

cs A1 AO RE WE 

0 0 0 Status Reg Command Reg 
0 0 1 Track Reg Track Reg 
0 1 0 Sector Reg Sector Reg 
0 1 1 Data Reg Data Reg 0 7-14 DATA ACCESS LINES DAL.0-DAL7 Eight bit Bidirectional bus used for transfer of data, control, 

and status. This bus is receiver enabled by WE or transmitter 
enabled by RE. Each line will drive 1 standard TTL load. 

24 CLOCK CLK This input requires a free-running 50% duty cycle square wave 
clock for internal timing reference, 2 MHz o: 1 % for s• drives, 
1 MHz ± 1 % for mini-floppies. 

38 DATA REQUEST DRQ This open drain output indicates that the DR contains 
assembled data in Read operations, or the DR is empty in 
Write operations. This signal Is reset when serviced by the 
computer through reading or loading the DR in Read or Write 
operations, respectively. Use 10K pui~up resistor to + 5. 

39 INTERRUPT REQUEST INTRO This open drain output is set at the completion of any com-
mand and is reset when the STATUS register is read or the 
command register is written to. Use 10K pul~up resistor to 
+5. 

FLOPPY DISK INTERFACE 

15 STEP STEP The step output contains a pulse for each step. 

16 DIRECTION DlRC Direction Output is active high when stepping in, active low 
when stepping oul 

17 EARLY EARLY Indicates that the WRITE DATA pulse occuring while Early is 
active (high) should be shifted earty for write precom-
pensation. 

18 LATE LATE Indicates that the write data pulse occurring while Late is 
active (high) should be shifted late for write precompensation. -2 



PIN 
NUMBER PIN NAME SYMBOL FUNCTION 

22 TEST TEST This input is used for testing purposes only and should be tied 

j 
to + 5V or left open by the user unless interfacing to voice coil 
actuated steppers. 

23 HEAD LOAD TIMING HLT When a logic high is found on the HLT Input the head is 
assumed to be engaged. II is typically derived from a 1 shot 
triggered by HLD. 

25 READGATE AG This output is used for synchronization of external data 
(1791, 1792, 1793, 1794) separators. The output goes high after two Bytes of zeros in 

single density, or 4 Bytes of either zeros or ones in double 
density operation. 

25 SIDE SELECT OUTPUT sso The logic level of the Side Select Output is directly controlled 
(1795, 1797) by the 'S' flag in Type II or Ill commands. When U = 1, SSO is 

set to a logic 1. When U = 0, SS0 is set to a logic 0. The SSO 
is compared with the side information in the Sector 1.0. Field. 
If they do not compare Status Bit 4 (RNF} is set. The Side 
Select Output is only updated at the beginning of a Type II or 
Ill command. It is forced to a logic O upon a MASTER RESET 
condition. 

26 READ CLOCK RCLK A nominal squ~wave clock signal derived from the data 
stream must be provided to this input. Phasing (i.e. RCLK 
transitions) relative to R/l!N READ is important but polarity 
(RCLK high or low) is not. 

27 RAW READ R/l!NREAD The data input signal directly from the drive. This input shall 
be a negative pulse for each recorded flux transition. 

28 HEAD LOAD HLD The HLD output controls the loading of the Read-Write head 
against the media 

29 TRACK GREATER THAN 43 TG43 This output informs the drive that the Read/Write head is 
positioned between tracks 44-76. This output is valid only 
during Read and Write Commands. 

30 WRITE GATE WG This output is made valid before writing is to be performed on 
the diskette. 

31 WRITE DATA WO A 200 ns (MFM) or 500 ns (FM) output pulse per flux transition. 
WD contains the unique Address marks as well as data and 
clock in both FM and MFM formats. 

32 READY READY This input indicates disk readiness and is sampled for a logic 
high before Read or Write commands are performed. If Ready 
is low the Read or Write operation is not perfonned and an 
interrupt is generated. Type I operations are perfonned 
regardless of the state of Ready. The Ready input appears in 
inverted fonnat as Status Register bit 7. 

33 WRITE FAULT WF/VFOE This is a bi-directional signal used to signify writing faults at 
VFOENABLE the drive, and to enable the external PLO data separator. When 

WG = 1, Pin 33 functions as a WF Input. If WF = 0, any write 
command will Immediately be terminated. When WG = 0, Pin 
33 functions as a VFOE output. VFOE will go low during a read 
operation after the head has loaded and settled (HLT = 1). On 
the 179517, it will remain low until the last bit of the second 
CRC byte in the ID field. VFOE will then go high until 8 bytes 
(MFM) or 4 bytes (FM) before the Address Mark. ii will then go 
active until the last bit of the second CRC byte of the Data 
Field. On the 1791/3, VFOE will remain low until the end of the 
Data Field. This pin has an internal 100K Ohm pull-up resistor. 

34 TRACKOO TROO This input informs the FD179X that the Read/Write head is 
positioned over Track 00. 

3 



PIN NUMBER PIN NAME SYMBOL 

35 INDEX PULSE IP 

36 WRITE PROTECT WPRT 

37 DOUBLE DENSITY ODEN 

GENERAL DESCRIPTION 
The FD179X are N-Channel Silicon Gate MOS LSI 
devices which perform the functions of a Floppy Disk 
Formatter/Controller in a single chip implementation. 
The FD179X, which can be considered the end result 
of both the FD1TT1 and FD1781 designs, is IBM 3740 
compatible in single density mode (FM) and System 34 
compatible in Double Density Mode (MFM). The 
FD179X contains all the features of its predecessor the 
FD1TT1, plus the added features necessary to 
read/write and format a double density diskette. These 
include address mark detection, FM and MFM encode 
and decode logic, window extension, and write precom
pensation. In order to maintain compatibility, the 
FD1TT1, FD1781, and FD179X designs were made as 
close as possible with the computer interface, instruc
tion set, and VO registers being identical. Also, head 
load control is identical. In each case, the actual pin 
assignments vary by only a few pins from any one to 
another. 
The processor interlace consists of an 8-bit bi-direc
tional bus for data, status, and control word transfers. 
The FD179X is set up to operate on a multiplexed bus 
with other bu&0riented devices. 
The FD179X is TTL compatible on all inputs and 
outputs. The outputs will drive ONE TTL load or three 
LS loads. The 1793 is identical to the 1791 except the 
DAL lines are TRUE for systems that utilize true data 
busses. 
The 179517 has a side select output for controlling 
double sided drives, and the 1792 and 1794 are "Single 
Density Only" versions of the 1791 and 1793 respec
tively. On these devices, ODEN must be left open. 

ORGANIZATION 

The Floppy Disk Formatter block diagram is illustrated 
on page 5. The primary sections include the parallel 
processor interface and the Floppy Disk interface. 

Data Shift Register - This 8-bit register assembles 
serial data from the Read Data input (RAW READ) 
QUring Read operations and transfers serial data to the 
Write Data output during Write operations. 

Data Register - This 8-bit register is used as a 
holding register during Disk Read and Write operations. 
In Disk Read operations the assembled data byte is 
transferred in parallel to the Data Register from the 
Data Shift Register. In Disk Write operations in
fonnation is transferred in parallel from the Data 
Register to the Data Shift Register. 

FUNCTION 

This input informs the FD179X when the index hole is en-
countered on the diskette. 

This input is sampled whenever a Write Command is received. 
A logic low terminates the command and sets the Write 
Protect Status bit. 

This input pin selects either single or double density 
operation. When ODEN : 0, double density is selected. When 
ODEN : 1, single density is selected. This line must be left 
open on the 1792/4. 

4 

When executing the Seek command the Data Register 
holds the address of the desired Track position. This 
register is loaded from the DAL and gated onto the 
DAL under processor control. 
Track Register - This 8-bit register holds the track 
number of the current Read/Write head position. It is 
incremented by one every time the head is stepped in 
(towards track 76) and decremented by one when the 
head is stepped out (towards track 00). The contents of 
the register are compared with the recorded track 
number in the ID field during disk Read, Write, and 
Verify operations. The Track Register can be loaded 
from or transferred to the DAL This Register should 
not be loaded when the device is busy. 
SeclCM' Ragister(SR) - This 8-bit register holds the address 
of the desired sector position. The contents of the register 
are compared with the recorded sector number in the ID 
field during disk Read or Write operations. The Sector 
Register contents can be loaded from or transferred to the 
DAL This register should not be loaded when the device is 
busy. 
Command Register (CR) - This 8-bit register holds the 
command presently being executed. This register should 
not be loaded when the device is busy unless the new 
command is a force interrupt. The command register can 
be loaded from the DAL, but not read onto the DAL 
Status Register (STR) - This 8-bil register holds device 
Status information. The meaning of the Status bits is a 
function of the type of command previously executed. This 
register can be read onto the DAL, but not loaded from the 
DAL 
CRC Logic - This logic is used to check or to generate the 
16-bit Cyclic Redundancy Check (CRC). The polynomial is: 
G(x) = x" + x12 + X5 + 1. 
The CRC includes all information starting with the address 
mark and up to the CRC characters. The CRC register is 
preset to ones prior to data being shifted through the 
circuit. 
Arifhmetk/Loglc Unit (ALU) - The ALU is a serial com
parator, incrementer, and decrementer and is used for 
register modification and comparisons with the disk 
recorded ID field. 
Timing and Contn>I - All computer and Floppy Disk In
terface controls are generated through this logic. The in
ternal device timing Is generated from an external crystal 
clock. 
The FD179X has two different modes of operation ac
cording to the state of ODEN. When ODEN : 0 double 
density (MFM) is assumed. When ODEN : 1, single 

C 

-



0.0,TA ••• 

~· 
, .. TFIO .. 
" .. .. 
M ., 

Cl.14; 12 Of! ' .. ~, ..... 
"HOT USEO Of,I 11'821<1 

;o:;;z, 

CIIC lOGIC 

COMPUHFI CO .. Tf'Ol ... 
, .. TEFlfA,CE COOITFIOl 
COOITFIOL t2JO X 161 

~--------------< FIClll 

., 
TG•J -M•v•oE 

• 
tFI06 

CON1FIO,. ... FIEAOV 
,,,.tEAFACE -~, STEP 

OoFIC 

EAFllV 

'"'£ ~ 
== 
"'0 

"" 

FD179X BLOCK DIAGRAM 

density (FM) is assumed. 1792 & 1794 are single density 
only. 

AM Detector - The address mark detector detects ID, data 
and index address marks during read and write operations. 

PROCESSOR INTERFACE 

The interface to the processor is accomplished through the 
eight Data Access Lines (CiA[) and associated control 
signals. The DAL are used to transfer Data, Status, and 
Control words out of, or Into the FD179X. The DAL are three 
state buffers that are enabled as output drivers when Chip 
Select (CS) and Read Enable (RE) are active (low logic state) 
or ac1 as input receivers when CS and Write Enable (WE) 
are active. 

When transfer of data with the Floppy Disk Conttoller is 
required by the host processor, the device address is 
decoded and CS is made low. The address bits A 1 and AO, 
combined with the signals RE during a Read operation or 
WE during a Wnte operation are interpreted as selecting 
the following registers: 

5 

A1 AO READ(RE) WRITE(WE) 

0 0 Status Register Command Register 
0 1 Track Register Track Register 
1 0 Sector Register Sector Register 
1 1 Data Register Data Register 

During Direct Memory Access (DMA) types ol data 
transfers between the Data Register of the FD179X and the 
processor, the Data Request (DAO) output is used in Data 
Transfer control. This signal also appears as status bit 1 
during Read and Write operations. 

On Disk Read operations the Data Request is activated (set 
high) when an assembled serial input byte is transferred in 
parallel to the Data Register. This bit is cleared when the 
Data Register is read by the processor. If the Data Register 
is read after one or more characters are lost, by having new 
data transferred into the register prior to processor readout, 
the Lost Data bit is set in the Status Register. The Read 
operation continues until the end of sector is reached. 

On Disk Write operations the data Request is activated 
when the Data Register transfers its contents to the Data 

• 



Shift Register, and requires a new data byte. ii is reset 
when the Data Register is loaded with new data by the 
processor. If new data is not loaded at the lime the next 
serial byte is required by the Floppy Disk, a byte of zeroes 
is written on the diskette and the Lost Data bit is set In the 
Status Register. 
At the completion of every command an INTRO is 
generated. INTRO is reset by either reading the status 
register or by loading the command register with a new 
command. In addition, INTRO is generated if a Force 
Interrupt command condition is met. 
The 179X has two modes of operation according to the 
state of ODEN (Pin 37). When ODEN = 1, single density is 
selected. In either case, the CLK input (Pin 24) is at 2 MHz. 
However, when interfacing with the mini-floppy, the CLK 
input is set at 1 MHz for both single density and double 
density. 
GENERAL DISK READ OPERATIONS 
Sector lengths of 128, 256, 512 or 1024 are obtainable in 
either FM or MFM fonnats. For FM, ODEN should be 
placed to logical "1." For MFM formats, ODEN should be 
placed to a logical "0." Sector lengths are determined at 
format lime by the fourth byte in the "ID" field. 

Sector Length Table• 

Sector Length Number of Bytes 
Fieldlhexl in Sector (decimal) 

00 128 
01 256 
CIR 512 
03 1024 

•1795197 may vary- see command summary. 
The number of sectors per track as far as the FD179X is 
concerned can be from 1 to 255 sectors. The number of 
tracks as far as the FD179X is concerned is from Oto 255 
tracks. For IBM 3740 cornpalibllity, sector lengths are 128 
bytes with 26 sectors per track. For System 34 com
patibility (MFM), sector lengths are 256 bytes/sector with 26 
sectors/track; or lengths of 1024 bytes/sector with 8 
sectors/track. (See Sector Length Table) 
For read operations in 8" double density the FD179X 
requires RAW READ Data (Pin 27) signal which is a 200 ns 
pulse per flux transition and a Read clock (RCLK) signal to 
indicate flux transition spacings. The RCLK (Pin 26) signal 
is provided by some drives but ii not it may be derived 
externally by Phase lock loops, one shots, or counter 
techniques. In addition, a Read Gate Signal is provided as 
an output (Pin 25) on 1791192193194 which can be used to 
inform phase lock loops when to acquire synchronization. 
When reading from the media in FM. RG is made true when 
2 bytes of zeroes are detected. The FD179X must find an 
address mark within the next 10 bytes; otherwise RG is 
reset and the search for 2 bytes of zeroes begins all over 
again. If an address mark is found within 10 bytes, RG 
remains true as long as the FD179X is deriving any useful 
inlonnation from the data stream. Similarly for MFM, RG is 
made active when 4 bytes of "00" or "FP' are detected. The 
FD179X must find an address mark within the next 16 
bytes, otherwise RG is reset and search resumes. 
During read operations (WG = 0), the VFOE (Pin 33) is 
provided for phase lock loop synchronization. VFOE will go 
active low when: 

• 

6 

a) Both HLT and HLD are True 
b) Settling Time, if programmed, has expired 
c) The 179X is inspecting data off the disk 

If WF/VFOE is not used, leave open or lie to a 10K resistor 
to +5. 
GENERAL DISK WRITE OPERATION 
When writing is to take place on the diskette the Write Gate 
(WG) output is activated, allowing current to flow into the 
Read/Write head. As a precaution to erroneous writing the 
first data byte must be loaded into the Data Register in 
response to a Data Request from the FD179X before the 
Write Gate signal can be activated. 
Writing is inhibited when the ~w~ri~te=Pro=te~c~t input is a logic 
low, in which case any Write command is immediately 
terminated, an interrupt is generated and the Write Protect 
status bit is set. The Write Fault input, when activated, 
signifies a writing fault condition detected in disk drive 
electronics such as failure to detect write current flow 
when the Write Gate is activated. On detection of this fault 
the F0179X tenninates the current command, and sets the 
Write Fault bit (bit 5) in the Status Word. The Write Fault 
input should be made inactive when the Write Gate output 
becomes inactive. 
For write operations, the FD179X provides Write Gate (Pin 
30) and Write Data (Pin 31) outputs. Write data consists of a 
series of 500 ns pulses in FM (ODEN = 1) and 200 ns 
pulses in MFM (ODEN = 0). Write Data provides the unique 
address marks in both fonnats. 
Also during write, two additional signals are provided for 
write precompensation. These are EARLY (Pin 17) and 
LATE (Pin 18). EARLY is active true when the WD pulse 
appearing on (Pin 30) is to be written EARLY. LATE is active 
true when the WO pulse is to be written LATE. If both 
EARLY and LATE are low when the WO pulse is present, 
the WO pulse is to be written at nominal. Since write 
precompensation values vary from disk manufacturer to 
disk manufacturer, the actual value Is determined by 
several one shots or delay lines which are located external 
to the FD179X. The write precompensalion signals EARLY 
and LATE are valid for the duration of WO in both FM and 
MFM formats. 

READY 
Whenever a Read or Write command {Type II or Ill) is 
received the FD179X samples the Ready input. If this input 
Is logic low the command is not executed and an interrupt 
is generated. All Type I commands are performed re
gardless of the state of the Ready input. Also, whenever a 
Type II or Ill command is received, the TG43 signal output 
is updated. 

COMMAND DESCRIPTION 
The FD179X will accept eleven commands. Command 
words should only be loaded in the Command Register 
when the Busy status bit is off (Status bit 0). The one 
exception is the Force Interrupt command. Whenever a 
command is being executed, the Busy status bit is set. 
When a command is completed, an interrupt is generated 
and the Busy status bit is reset. The Status Register 
indicates whether the completed command encountered 
an error or was fault free. For ease of discussion, 
commands are divided into four types. Commands and 
types are summarized in Table 1. 

0 



TABLE 1. COMMAND SUMMARY 
A Commands forModels· 1791 1792 1793 1794 

' 
B Commands for Models· 1795 1797 

' 
Bits Bits 

•ype Command 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 

I Restore 0 0 0 0 h V r1 ro 0 0 0 0 h V r1 ro 
I Seek 0 0 0 1 h V r1 ro 0 0 0 1 h V r1 ro 
I Step 0 0 1 T h V r1 ro 0 0 1 T h V r1 ro 
I Step-In 0 1 0 T h V r1 ro 0 1 0 T h V r1 ro 
I Step-out 0 1 1 T h V r1 ro 0 1 1 T h V r1 ro 
II Read Sector 1 0 0 m s E C 0 1 0 0 m L E u 0 
II Write Sector 1 0 1 m s E C ao 1 0 1 m L E u ao 
Ill Read Address 1 1 0 0 0 E 0 0 1 1 0 0 0 E u 0 
Ill Read Track 1 1 1 0 0 E 0 0 1 1 1 0 0 E u 0 
Ill Write Track 1 1 1 1 0 E 0 0 1 1 1 1 0 E u 0 
IV Force Interrupt 1 1 0 1 l3 12 l1 lo 1 1 0 1 l3 12 11 lo 

FLAG SUMMARY TABLE 2. FLAG SUMMARY 

Command Bit 
Type No(s) Description 

I 0,.1 r1 ro = Stepping Motor Rate 
See Table 3 for Rate Summary 

I 2 V = Track Number Verify Flag V = 0, No verify 
V = 1, Verify on destination track 

I 3 h = Head Load Flag h = 1, Load head at beginning 
h = 0, Unload head at beginning 

I 4 T = Track Update Flag T = 0, No update 
T = 1, Update track register 

H 0 ao = Data Address Mark ao = 0, FB (DAM) 
ao = 1, FB (deleted DAM) 

H 1 C = Side Compare Flag C = 0, Disable side compare 
C = 1, Enable side compare 

II & Ill 1 U = Update SSO u = o, Update sso too 
u = 1, Update SSO to 1 

II & Ill 2 E = 15MSDelay E = 0, No 15 MS delay 
E = 1, 15 MS delay 

n 3 S = Side Compare Flag s = 0, Compare for side 0 
s = 1, Compare for side 1 

• 3 L = Sector Length Flag LSB's Sector Length in ID Field 
00 01 10 11 

L =O 256 512 1024 128 

L - 1 128 256 512 1024 

H 4 m = Multiple Record Flag m = 0, Single record 
m = 1, Multiple records 

IV 0-3 Ix = Interrupt Condition Flags 
lo = 1 Not Ready To Ready Transition 
11 = 1 Ready To Not Ready Transition 
12 = 1 Index Pulse 
l3 = 1 Immediate Interrupt, Requires A Reset 
l3-lo = O Terminate With No Interrupt (INTRO) 

•NOTE: See Type IV Command Description for further information. 

7 



TYPE I COMMANDS 

The Type I Commands include the Restore, Seek, Step, 
Step-In, and Step-Out commands. Each of the Type I 
Commands contains a rate field (ro r1), which detennines 
the stepping motor rate as defined in Table 3. 

A 2 µs (MFM) or 4 µs (FM) pulse is provided as an output to 
the drive. For every step pulse issued, the drive moves one 
track location in a direction determined by the direction 
output. The chip will step the drive in the same direction it 
last stepped unless the command changes the direction. 

The Direction signal is active high when stepping in and 
low when stepping out. The Direction signal is valid 12 µs 
before the first stepping pulse is generated. 

The rates (shown in Table 3) can be applied to a Step
Direction Motor through the device interface. 

TABLE 3. STEPPING RATES 

CLK 2 MHz 2 MHz 1 MHz 1 MHz 2MHz 1 MHz 

ODEN 0 0 X X 

R1 RO TEST:1 TEST=l TEST:l TEST::1 TEST=O TEST:O 

0 0 3m, 3 m, 6 m, . "" 164µ5 368µs 

0 l 6m, 6 ms 12 ms 12 ms 19QµS 380µs 

l 0 1oms 10 ms 20 ms 20 ms 198µS 396µ5 

l l 15ms 15 ms 30 ms 30 ms 208,s 416µs 

After the last directional step an additional 15 milliseconds 
of head settling time takes place if the Verify flag is set in 
Type I commands. Note that this time doubles to 30 ms for 
a 1 MHz clock. If TEST = 0, there is zero settling time. 
There is also a 15 ms head settling time if the E flag is set in 
any Type II or Ill command. 

When a Seek, Step or Restore command is executed an 
optional verification of Read-Write head position can be 
perfonned by settling bit 2 (V = 1) in the command word to 
a logic 1. The verification operation begins at the end of the 
15 millisecond settling time after the head is loaded against 
the media The track number from the first encountered ID 
Field is compared against the contents of the Track 
Register. If the track numbers compare and the ID Field 
Cyclic Redundancy Check (CRC) is correct, the verify 
operation is complete and an INTRO is generated with no 
errors. If there is a match but not a valid CRC, the CRC error 
status bit is set (Status bit 3), and the next encountered ID 
field is read from the disk for the verification operation. 

The FD179X must find an ID field with correct track number 
and correct CRC within 5 revolutions of the media; 
otherwise the seek error is set and an INTRO is generated. 
If V = 0, no verification is pertormed. 

The Head Load (HLD) output controls the movement of the 
read/write head against the media HLO is activated at the 
beginning of a Type I command if the h flag is set (h = 1), at 
the end of the Type I command if the verify flag (V = 1), or 
upon receipt of any Type II or 111 command. Once HLO is 
active it remains active until either a Type I command is 
received with (h = O and V = O); or if the FD179X is in an 
idle state (non-busy) and 15 index pulses have occurred. 

8 

Head Load timing (HLl) is an input to the FD179X which is 
used for the head engage time. When HLT = 1, the FD179X 
assumes the head is completely engaged. The head 
engage time is typically 30 to 100 ms depending on drive. 
The low to high transition on HLO is typically used to fire a 
one shot. The output of the one shot is then used for HLT 
and supplied as an input to the FD179X. 

HLol-----' 

l-so TO tooms--1 
r---- '--------

' ' 
HL T jFAOM ONE SHOT) 

HEAD LOAD TIMING 

When both HLD and HLT are true, the FD179X will then 
read from or write to the media The "and" of HLD and HLT 
appears as status Bit 5 in Type I status. 

In summary for the Type I commands: if h = 0 and V = 0, 
HLD is reset. If h = 1 and V = 0, HLD is set at the 
beginning of the command and HLT is not sampled nor is 
there an internal 15 ms delay. If h = 0 and V = 1, HLD is 
set near the end of the command, an internal 15 ms occurs, 
and the FD179X waits for HLT to be true. If h = 1 and V = 
1, HLD is set at the beginning of the command. Near the 
end of the command, after all the steps have been issued, 
an internal 15 ms delay occurs and the F0179X then waits 
for HL T to occur. 

For Type II and Ill commands with E flag off, HLD is made 
active and HLT is sampled until true. With E flag on, HLD is 
made active, an internal 15 ms delay occurs and then HLT 
is sampled until true. 

RESTORE (SEEK TRACK 0) 

Upon receipt of this command the Track 00 (TROil) input is 
sampled. If TAOO is active low indicating the Read-Write 
head is positioned over track 0, the Track Register is loaded 
with zeroes and an interrupt is generated. If TAOO is not 
active low, stepping pulses (pins 15 to 16) at a rate specified 
by the r1 ro field are issued until the ""fffix)input is activated. 
At this time the Track Register is loaded with zeroes and an 
interrupt is generated. If the TROO input does not go active 
low after 255 stepping pulses, the FD179X terminates 
operation, interrupts, and sets the Seek error status bit, 
providing the V flag is set. A verification operation also 
lakes place if the V flag is set. The h bit allows the head to 
be loaded at the start of command. Note that the Restore 
command is executed when MR goes from an active to an 
inactive state and that the ORO pin stays low. 

SEEK 

This command assumes that the Track Register contains 
the track number of the current position of the Read-Write 
head and the Data Register contains the desired track 
number. The FD179X will update the Track register and 
issue stepping pulses in the appropriate direction until the 
contents of the Track register are equal to the contents of 

0 



"' 

ENfEA 

"' 
SET 8USY AESU CAC 
SEEK EAAOR ORO INTRO 

FF,.TOTA 

0 TO OR 

"' 

"' 

"' 

RESET HLO 

"' OIRECT!ON 

RESET 
OIAECTION 

"' 

TYPE I COMMAND FLOW 

" " ' 

.. 
C 

the Data Register (the desired track location). A verification 
operation takes place if the V flag is on. The h bit allows the 
head to be loaded at the start of the command. An interrupt 
is generated at the completion of the command. Note: 
When using multiple drives, the track register must be 
updated for the drive selected before seeks are issued. 

STEP 

Upon receipt of this command, the FD179X issues one 
stepping pulse to the disk drive. The stepping motor 
direction is the same as in the previous step command. 
After a delay determined by the rvo field, a verification 
takes place if the V flag is on. If the U flag is on, the Track 
Register is updated. The h bit allows the head to be loaded 
at the start of the command. An interrupt is generated at 
the completion of the command. 

STEP-IN 

Upon receipt of this command, the FD179X issues one 
stepping pulse in the direction towards track 76. If the U 

9 

OR TO OSA 

ISSUE 
ONE STEP PULSE 

OEV,V •CCOAOING 
TO Al RG FIELO 

SET O,AECTION 

•I TO TA 

0 TO TA 

TYPE I COMMAND FLOW 

flag is on, the Track Register is incremented by one. After a 
delay determined by the r1 ro field, a verification takes place 
if the V flag is on. The h bit allows the head to be loaded at 
the start of the command. An interrupt is generated at the 
completion of the command. 

STEP-OUT 

Upon receipt of this command, the FO179X issues one 
stepping pulse in the direction towards track O. If the U flag 
is on, the Track Register is decremented by one. After a 
delay determined by the r1 ro field, a verification takes place 
if the V flag is on. The h bit allows the head to be loaded at 
the start of the command. An interrupt is generated at the 
completion of the command. 

EXCEPTIONS 

On the 179517 devices, the SSO output is not affected 
during Type 1 commands, and an internal side compare 
does not take place when the(V) Verify Flag is on. 



VERIFY 
SEQUENCE 

.., 

"' 

.., 

.., 

... TAO RESET 9USY 
SET SEEK EA"'0"' 

RlSET ,~ 

( :~ IUSY )---.J 
NOTE i, fflT' • 0. T!-IEAE IS NO 1SMS OElAY 

IJ!" Trff ,. 1 ANO CLK = 1 MtU. THEAE IS A lDMS DELAY 

TYPE I COMMAND FLOW 

TYPE II COMMANDS 

The Type II Commands are the Read Sector and Write 
Sector commands. Prior to loading the Type II Command 
into the Command Register, the computer must load the 
Sector Register with the desired sector number. Upon 
receipt of the Type II command, the busy status Bit is set. If 
the E flag = 1 (this is the normal case) HLD is made active 
and HL Tis sampled after a 15 msec delay. If the E flag is 0, 
the head is loaded and HLT sampled with no 15 msec 
delay. The ID field and Data Field format are shown on page 
13. 
When an ID field is located on the disk, the FD179X 
compares the Track Number on the ID field with the Track 
Register. If there is not a match, the next encountered 10 
field is read and a comparison is again made. If there was a 
match, the Sector Number of the ID field is compared with 
the Sector Register. If there is not a Sector match, the next 
encountered 10 field is read off the disk and comparisons 
again made. If the ID field CAC is correct, the data field is 

10 

then located and will be either written into, or read from 
depending upon the command. The FD179X must find an 
ID field with a Track number, Sector number, side number, 
and CRC within four revolutions of the disk; otherwise. the 
Record not found status bit is set (Status bit 3) and the 
command is tenninated with an interrupt. 

INTRO 
"'ESET IUSY 

"' 

SET IUSY RESET CIAO LOST 
DATA RECORD NOT FOUND & 

ST ... TUS ens~'' INTRO 

.., 

.., 

TYPE II COMMAND 

"' ,~, 

Each of the Type II Commands contains an (m) flag which 
detennines if multiple records (sectors) are to be read or 
written, depending upon the command. If m = 0, a single 
sector is read or written and an interrupt is generated at the 
completion of the command. If m = 1, multiple records are 
read or written with the sector register internally updated 
so that an address verification can occur on the next 

0 



j 

., 

record. The FD179X will continue to read or write multiple 
records and update the sector register in numerical 
ascending sequence until the sector register exceeds the 
number of sectors on the track or until the Force Interrupt 
command is loaded into the Command Register, which 
terminates the command and generates an interrupt. 

For example: If the FD179X is instructed to read sector 27 
and there are only 26 on the track, the sector register ex
ceeds the number available. The FD179X will search for 5 
disk revolutions, interrupt out, reset busy, and set the 
record not found status bit. 

The Type II commands for 1791-94 also contain side select 
compare flags. When C = 0 (Bit 1) no side comparison is 
made. When C = 1, the LSB of the side number is read off 
the ID Field of the disk and compared with the contents of 
the (S) flag (Bit 3). If the S flag compares with the side 
number recorded in the ID field, the FD179X continues with 
the ID search. If a comparison is not made within 5 index 
pulses, the interrupt line is made active and the Record
Not-Found status bit 1s set. 

SET CAC 
STATUS ERROii 

IHTAO AESET BUSY 
SU AECOAIHICIT fOUNO 

8Al"'G IN SECTOfl lfp,jQTl't flUO 
STQflE lENGTl't I"' INTEA ... Al 

AEGJSTEA 

TYPE II COMMAND 

RESET 

'"' 

11 

The Type II and Ill commands for the 1795-97 contain aside 
select flag (Bit 1). When U = 0, SSO is updated to 0. 
Similarly, U = 1 updates SSO to 1. The chip compares the 
SSO to the ID field. If they do not compare within 5 
revolutions the interrupt line is made active and the ANF 
status bit is set. 

The 179517 READ SECTOR and WRITE SECTOR com
mands include a 'L' flag. The 'L' flag, in conjunction with 
the sector length byte of the ID Field, allows different byte 
lengths to be implemented in each sector. • For IBM 
compatability, the 'L' flag should be set to a one. 

READ SECTOR 

Upon receipt of the Read Sector command, the head is 
loaded, the Busy status bit set, and when an ID field is 
encountered that has the correct track number, correct 
sector number, correct side number, and correct CRC, the 
data field is presented to the computer. The Data Address 

•o 

•o 

"' 
PVT RECOAO TYPE '"' 

ST.<,TVS REG BIT 5 

INTRO RESET BUSY 
SET CRC ERROR 

READ SECTOR 
SEQUENCE 

,,,.TRQ RESET 8\JSY 

TYPE II COMMAND 



0ELAY29VTES~GAP 

SET ORO 

OELAY 8 8YTES Of GAP 

TUIIN 0"' WG l WAITE 
e 9YTES OF UFIOS 

-ITf DATA AM 
ACCOfllOING TO A(t flfLO 
~ -•Tf COMMA .. O 

OF1 TO OSFI SEl DAO 

WRITf 8Ylf TO OISfl 

WRITE SECTOR 
SEQUENCE 

SET DATA 
LOST 

WFIITE 8TTf 
~ ZEROS 

Wflllf CAC 

TUII .. Off WG 

TYPE II COMMAND 
Mark of the data field must be found within 30 bytes in 
single density and 43 bytes in double density of the last ID 
field CRC byte; if not, the ID field is searched for and 
verified again followed by the Data Address Mark search. If 
after 5 revolutions the DAM cannot be found, the Record 
Not Found status bit is set and the operation is terminated. 
When the first character or byte of the data field has been 
shifted through the DSR, ii is transferred to the DR, and 
ORO is generated. When the next byte is accumulated in 
the DSR, it is transferred to the DR and another ORO is 
generated. If the Computer has not read the previous 
contents of the DR before a new character is transferred 
that character is lost and the Lost Data Status bit is set. 
This sequence continues until the complete data field has 
been inputted to the computer. If there is a CRC error at the 
end of the data field, the CRC error status bit is set, and the 
command is terminated (even if it is a multiple record 
command). 
At the end of the Read operation, the type of Data Address 
Mark encountered in the data field is recorded in the Status 
Register (Bit 5) as shown: 

12 

STATUS 
BIT5 

1 Deleted Data Mark 
0 Data Mark 

WRITE SECTOR 

Upon receipt of the Write Sector command, the head is 
loaded (HLD active) and the Busy status bit is sel When an 
ID field is encountered that has the correct track number, 
correct sector number, correct side number, and correct 
CRC, a ORO is generated. The FD179X counts off 11 bytes 
in single density and 22 bytes in double density from the 
CRC field and the Write Gate (WG) output is made active if 
the ORO is serviced (i.e., the DR has been loaded by the 
compute~. If ORO has not been serviced, the command is 
terminated and the Lost Data status bit is set. If the ORO 
has been serviced, the WG is made active and six bytes of 
zeroes in single density and 12 bytes in double density are 
then written on the disk. Al this time the Data Address 
Mark is then written on the disk as determined by the ao 
field of the command as shown below: 

1 
0 

Data Address Mark (Bit 0) 

Deleted Data Mark 
Data Mark 

The FD179X then writes the data field and generates DRO's 
to the computer. If the ORO is not serviced in time for 
continuous writing the Lost Data Status Bit is set and a 
byte of zeroes is written on the disk. The command is not 
terminated. Aller the last data byte has been written on the 
disk, the two-byte CRC is computed internally and written 
on the disk followed by one byte of logic ones in FM or in 
MFM. The WG output is then deactivated. For a 2 MHz 
clock the INTRO will set8 to 12µsecafterthe lastCRC byte 
is written. For partial sector writing, the proper method is to 
write the data and fill the balance with zeroes. By letting the 
chip fill the zeroes, errors may be masked by the lost data 
status and improper CRC Bytes. 

TYPE Ill COMMANDS 

READ ADDRESS 

Upon receipt of the Read Address command, the head 
is loaded and the Busy Status Bit is set. The next 
encountered ID field is then read in from the disk, and 
the six data bytes of the ID field are assembled and 
transferred to the DR, and a DRO is generated for each 
byte. The six bytes of the ID field are shown below: 

TRACK SIDE SECTOR SECTOR CRC CRC 
ADDA NUMBER ADDRESS LENGTH 1 2 

1 2 3 4 5 6 

Although the CRC characters are transferred to the 
computer, the FD179X checks for validity and the CRC 
error status bit is set if there is a CRC error. The Track 
Address of the ID field is written into the sector 
register so that a comparison can be made by the 
user. At the end of the operation an interrupt is 
generated and the Busy Status is reset. 

0 

-



.J 

., 

READ TRACK 

Upon receipt of the READ track command, the head is 
loaded, and the Busy Status bit is set. Reading starts with 
the leading edge of the first encountered index pulse and 
continues until the next index pulse. All Gap, Header, and 
data bytes are assembled and transferred to the data 
register and ORQ's are generated for each byte. The ac
cumulation of bytes is synchronized to each address mark 
encountered. An interrupt is generated at the completion of 
the command. 

This command has several characteristics which make it 
suitable for diagnostic purposes. They are: the Read Gate 

su, .. u10 
l0$T DATA 

lll$ET l1,1$Y 

SET9USY ~SHOO'IO 
l0$T 0"'" STATUS 

BITS• ~ 

INTRO 
RESET eusv 

"" INCIO 
l'UlS( 

OCCUAEO 

OIITODSII 

TYPE Ill COMMAND WRITE TRACK 

•O 

13 

is not activated during the command; no CRC checking is 
performed; gap information is included in the data stream; 
the internal side compare is not performed; and the ad
dress mark detector is on for the duration of the command. 
Because the A.M. detector is always on, write splices or 
noise may cause the chip to look for an A.M. If an address 
marl< does not appear on schedule the Lost Data status flag 
is set. 

The ID A.M., ID field, ID CRC bytes, DAM, Data, and Data 
CRC Bytes for each sector will be correct. The Gap Bytes 
may be read incorrectly during write-splice time because of 
synchronization. 

, .. TAO AESET SUSY 

WIIITftCIIIC 
CHARS Clll ■ FF 

Wf'IITE FC 
CLK : t>T 

-TEFt> FfOfl 
FSF8 CLK ■ CT 
INITIALIZE Cft<: 

WAlff 
8VTE Of UAOS 
SHO,UAlOST 

WAIT( Al , .. 1,1FM 
WITH 1,11ss, .. a Ct.OCK 

,,,.,n,o.L1lf CAC 

WAITE Cl IN Mfl,I 
W,TH ... ,ss, .. a CLOCK 

TYPE Ill COMMAND WRITE TRACK 



CONTROL BYTES FOR INITIALIZATION 

DATA PATTERN FD179X INTERPRETATION FD1791/3 INTERPRETATION 
IN DR (HEX) IN FM (DDEN = 1) IN MFM (!IDEN = 0) 

00 thru F4 Write 00 thru F4 with CLK = FF Write 00 thru F4, in MFM 
FS Not Allowed Write AP in MFM, Preset CRC 
F6 Not Allowed Write C2" in MFM 
F7 Generate 2 CRC bytes Generate 2 CRC bytes 
FB thru FB Write FB thru FB, Clk = C7, Preset CRC Write FB thru FB, in MFM 
FC Write FC with Clk = D7 Write FC in MFM 
FD Write FD with Clk = FF Write FD in MFM 
FE Write FE, Clk = C7, Preset CRC Write FE in MFM 
FF Write FF with Clk = FF 

• Missing clock transition between bits 4 and 5 

WRITE TRACK FORMATTING THE DISK 

(Refer to section on Type Ill commands for flow diagrams.) 

Formatting the disk is a relatively simple task when 
operating programmed 1/0 or when operating under DMA 
with a large amount of memory. Data and gap information 
must be provided at the computer interface. Formatting the 
disk is accomplished by positioning the A/W head over the 
desired track number and issuing the Write Track com
mand. 

Upon receipt of the Write Track command, the head Is 
loaded and the Busy Status bit is set. Writing starts with 
the leading edge of the first encountered index pulse and 
continues until the next index pulse, at which time the 
interrupt Is activated. The Data Request is activated Im• 
mediately upon receiving the command, but writing will not 
start until after the first byte has been loaded into the Data 
Register. If the DA has not been loaded by the time the 
Index pulse is encountered the operation is tenninated 
making the device Not Busy, the Lost Data Status Bit is set, 
and the Interrupt is activated. If a byte is not present in the 
DR when needed, a byte of zeroes is substituted. 

This sequence continues from one index mark to the next 
Index mark. Normally, whatever data pattern appears in the 
data register is written on the disk with a normal clock 
pattern. However, if the FD179X detects a data pattern of 
F5 ihru FE in the data register, this is interpreted as data 
address marks with missing clocks or CRC generation. 

The CAC generator Is initialized when any data byte from 
F8 to FE is about to be transferred from the DA to the DSA 
in FM or by receipt of F5 in MFM. An F7 pattern will 
generate two CAC characters in FM or MFM. As a con
sequence, the patterns F5 thru FE must not appear in the 
gaps, data fields, or ID fields. Also, CAC's must be 
generated by an F7 pattern. 

Disks may be formatted in IBM 3740 or System 34 formats 
with sector lengths of 128,256,512, or 1024 bytes. 

TYPE IV COMMANDS 

The Forced Interrupt command is generally used to ter
minate a multiple sector read or write command or to in-

14 

Write FF in MFM 

••Missing clock transition betwo,en bits 3 & 4 

sure Type I status in the status register. This command can 
be loaded into the command register at any time. If there is 
a current command under execution (busy status bit set) 
the command will be terminated and the busy status bit 
reset. 

The lower four bits of the command determine the con
ditional interrupt as follows: 

lo = Not-Ready to Ready Transition 
11 = Ready to Not-Ready Transition 
12 = Every Index Pulse 
13 = Immediate Interrupt 

The conditional interrupt is enabled when the cor
responding bit positions of the command (13 - lo) are set to 
a 1. Then, when the condition for interrupt is met, the IN
TRO line will go high signifying that the condition specified 
has occurred. If 13 - lo are all set to zero (HEX DO), no in
terrupt will occur but any command presently under 
execution will be immediately terminated. When using the 
immediate interrupt condition (13 = 1) an interrupt will be 
immediately generated and the current command ter
minated. Reading the status or writing to the command 
register will not automatically clear the interrupt. The HEX 
DO is the only command that will enable the immediate 
interrupt (HEX D8) to clear on a subsequent load command 
register or read status register operation. Follow a HEX D8 

. with DO command. 

Wait 8 micro sec (double density) or 16 micro sec (single 
density before issuing a new command after issuing a 
forced interrupt (times double when clock = 1 MHz). 
Loading a new command sooner than this will nullify the 
forced interrupt. 

Forced interrupt stops any command at the end of an in
ternal micro-instruction and generates INTRO when the 
specified condition is met. Forced interrupt will wait until 
ALU operations in progress are complete (CRC 
calculations, compares, etc.). 

More than one condition may be set at a time. If for 
example, the READY TO NOT-READY condition (11 = 1) 
and the Every Index Pulse (12 = 1) are both set, the 
resultant command would be HEX "DA". The "OR" func
tion is pertormed so that either a READY TO NOT- READY 
or the next Index Pulse will cause an interrupt condition. 

• 

0 



~ ., 

.. 

NO 

ENTER 

SET BUSY 
RESET STATUS 

BITS 2, 4, 5 

COPY'SRAG 
TOSSOUNE 
1179517 ONLY) 

SET HLD 

DELAY 15MS• 

TG43 
UPOAT£ 

"I TEST• ♦, NO DELAY 

NO 

NO 

H TEST•t and CLK•1 MHZ. 30 MS DELAY 

MAO 
RESET BUSY 

READ 
ADDRESS 

NO 

NO 

TYPE Ill COMMAND 
Read Track/ Address 

YES 

SHIFT ONE BIT 
INTOOSR 

YES 

YES 

TRANSFER 
OSRTO OR 

SET 
DFIO 

READ TRACK 
SEQUENCE 

YES 

YES 

NO 

SETffffilO 
AESETBUSY 

SET LOST 
OATABrT 



NO 

NO 

NO 

YES 

SHIFT 1 BYTE 
INTO OSA 

TRANSFER 
BYTE TO DA 

SET ORO 

YES 

TRANSFER TRACK 
NUMBER TO SECTOR 

AEGISTOA 

NO 

SET INTRO 
RESET BUSY 

YES 

READ ADDRESS 
SEQUENCE 

AESETSUSY 
SET INTRO 
SET RNF 

SETCAC 
ERAOABIT 

TYPE Ill COMMAND 
Read Track/Address 

16 

STATUS REGISTER 

Upon receipt of any command, except the Force Interrupt 
command, the Busy Status bit is set and the rest of the 
status bits are updated or cleared for the new command. If 
the Force Interrupt Command is received when there is a 
current command under execution, the Busy status bit is 
reset, and the rest of the status bits are unchanged. If the 
Force Interrupt command is received when there is not a 
current command under execution, the Busy Status bit is 
reset and the rest of the status bits are updated or cleared. 
In this case, Status reflects the Type I commands. 

The user has the option of reading the status register 
through program control or using the DRQ line with OMA or 
interrupt methods. When the Data register is read the ORO 
bit in the status register and the ORO line are automatically 
reset. A write to the Data register also causes both DRO's 
to reset. 

The busy bit in the status may be monitored with a user 
program to determine when a command is complete, in 
lieu of using the INTRO line. When using the INTRO, a busy 
status check is not recommended because a read of the 
status register to determine the condition of busy will reset 
the INTRO line. 

The format of the Status Register is shown below: 

7 6 5 2 0 
S7 S6 S5 S2 S1 so 

Status varies according to the type of command executed 
as shown in Table 4. 

Because of internal sync cycles, certain time delays must 
be obseived when operating under programmed UO. They 
are: (times double when clock = 1 MHZ) 

Delay Req'd. 
Operation Next Operation FM I MFM 

' 
Write to Read Busy Bit 12µs 

I 
6µS I 

Command Reg. (Status Bit 0) I 

Write to Read Status 28µs I 14µS 
Command Reg. Bits 1-7 I 

Write Any Read From Dill. 0 ' 0 I 

Register Register I 

IBM 3740 FORMAT - 128 BYTES/SECTOR 

Shown below is the IBM single-density format with 128 
bytes/sector. In order to format a diskette, the user must 
issue the Write Track command, and load the data register 
with the following values. For every byte to be written, there 
is one Data Request. 

0 



ii 

., 

IBM 3740 FORMAT - 128 BYTES/SECTOR 

Shown below is the IBM single-density format with 128 
bytes/sector. In order to format a diskette, the user must 
issue the Write Track command, and load the data register 
with the following values. For every byte to be written, there 
is one Data Request. 

NUMBER HEX VALUE OF 
OF BYTES BYTE WRITTEN 

40 FF(orOO)' 
6 00 
1 FC (Index Mark) . 26 FF (orOO)' 
6 00 
1 FE (ID Address Mark) 
1 Track Number 
1 Side Number(OOor01) 
1 SectorNumber(1 thru 1A) 
1 00 (Sector Length) 
1 F7 (2 CRC's written) 

11 FF(orOO)' 
6 00 
1 FB (Data Address Mark) 

128 Data (IBM uses E5) 
1 F7 (2 CRC's written) 

27 FF (orOO)' 
247** FF (or00)' 

*Write bracketed field 26 times 
* *Continue writing until FD179X interrupts out. 

Approx. 247 bytes. 
1-Optional '00' on 179517 only. 

.... -..... I 
........ H ., .......... ,,--

•.. ... 
.. ... -....... 

.. , -..... ,.,.. .. _ .. _, 
, . ., .. ... ... .,..,.,.. . ,,. . ., .... ,, ....... ~· ""'"''" ·- ., . .,,, .. , ............ ... ............ . .. ,. ......... ~ . -.... 

/ 
·-· - .. C!OO "0!00 '" -· -· -·· ""°'M .. ,.. 

IBM SYSTEM 34 FORMAT- 256 BYTES/SECTOR 

Shown below is the IBM dual-density format with 256 
bytes/sector. In order to format a diskette the user must 
issue the Write Track command and load the data register 
with the following values. For every byte to be written, there 
is one data request. 

NUMBER HEX VALUE OF 
OF BYTES BYTE WRITTEN 

80 4E 
12 00 
3 F6 (Writes C2) 
1 FC (Index Mari<) . 50 4E 

12 00 
3 F5(Writes A1) 
1 FE (ID Address Mark) 
1 Track Number(0 thru 4q 
1 Side Number(0 or 1) 
1 Sector Number(1 thru 1A) 
1 01 (Sector Length) 
1 F7 (2 CRCs written) 

22 4E 
12 00 
3 F5 (Writes A 1) 
1 FB (Data Address Mark) 

256 DATA 
1 F7 (2 CRCs written) 

54 4E 
595•• 4E 

*Write bracketed field 26 times 
··continue writing until FD179X interrupts out. 

Approx. 598 bytes. 

. "'"""" .,.. ........ _, 
"'- -· ·- ,., ~ . ., -· ~, "" ~, .. . ... 

~ \ 
I 

.... o. 

I I I I ""~,~•o ........ ,. .. '" •=.n .... , .,,, 

....... .,..., ......... ""''" 
~ ~ ~~!~=~:,,~-~~.: ... 

' I I .. , I ., ' ,. __ ,, ....... _ ! I .,_,.,.,,., ..... ' ... t------- " ..... -+ ...... - • L... ... ,. f-----,,.,,, - -i - .,,,,.. _j ,, •"n '""' \ ' __ .,,_.,.,,.,.."'"'"" :::.';",;:.~.'/;"'""-'' ""-"'°"'"'"""" 

IBM TRACK FOR.ll!M 

17 



1. NON-IBM FORMATS 

Variations in the IBM formats are possible to a limited 
extent if the following requirements are met: 

1) Sector size must be 128,256,512 or 1024 bytes. 

2) Gap 2 cannot be varied from the IBM format. 

3) 3 bytes of A1 must be used in MFM. 

In addition, the Index Address Mark is not required for 
operation by the FD179X. Gap 1, 3, and 4 lengths can be as 
short as 2 bytes for FD179X operation, however PLL lock up 
time, motor speed variation, write-splice area, etc. will add 
more bytes to each gap to achieve proper operation. It is 
recommended that the IBM format be used for highest 
system reliability. 

FM MFM 

Gapl 16bytes FF 32bytes4E 

-0 
AO Al CS 

... 

i--------· •6 ~ 31 .. s ____ _, 

,, .. ,.------J 

,~, ~---- -~ 
I-

~-----•• 

j ~I~_ .. _· __;----
__i '"' 

1 0ACC ~ 
;.---+-~ 

Gap II 11 bytes FF 22 bytes4E 
,15AL"i ----If----! o .. u 

>JJ•LOO 

. 6 bytesOO 12 bytesOO . 3bytesA1 

Gap 111•• 10bytes FF 24bytes4E 
4 bytesOO 8bytes00 

3bytesA1 

Gap IV 16bytes FF 16 bytes4E 

• Byte counts must be exact. 
••Byte counts are minimum, except exactly 3 bytes of A 1 

must be written. 

TIMING CHARACTERISTICS 

T, = OOC to 70°C, Voo = + 12V e. .6V, Vss = 0V, Vee =+5V ± .25V 

READ ENABLE TIMING (See Note 6, Page 21) 

SYMBOL CHARACTERISTIC MIN. TYP. 

TSET Selup ADDA & CS to R~ 50 
THLD Hold ADDA & CS from RE 10 
TRE RE Pulse Widlh 400 
TORR ORO Reset from RE 400 
TIRA INTRO Reset from RE 500 
TDACC Data Access from RE 
TDOH Data Hold From RE 50 

WRITE ENABLE TIMING (See Note 6, Page 21) 

SYMBOL CHARACTERISTIC MIN. TYP. 

TSET Setup ADDA & CS to WE 50 
THLD Hold ADDA & CS from WE 10 
TWE WE Pulse Width 350 
TORR ORO Reset from WE 400 
TIRA INTRO Reset from WE 500 
TDS Data Setup to WE 250 
TOH Data Hold from WE 70 

18 

00~ 

I $EAVICE 1WOAST CASE1 
"FM 11$u$ 
MFM t35uS 

ORO l'IISING 1EOGE IIIIOICATES THAT THE OAT• AEGISfER HAS ASSEMILEO 
~ .. 
0fllQ FALLING EOGE INDICATES TMAT THE OATA A£GIST£11 WAS AEAO 

INTAQ FUSING EOG£ OCCURS AT ENO OI' COMMAND 

INTRO F•LllNG EOGE INOIC.UES ,,..., THE STATUS REGISTER Wil$ REA0 

READ ENABLE TIMING 

MAX. UNITS CONDITIONS 

nsec 
nsec 
nsec C,=SOpf 

500 nsec 
3000 nsec See Note 5 

350 nsec C,=50pf 
150 nsec C,=50pf 

MAX. UNITS CONDITIONS 

nsec 
nsec 
nsec 

500 nsec 
3000 nsec See Note 5 

nsec 
nsec 

0 



J 

., 

• 

,., '-------------'"" 
- 1 oAA -

, .. , .. 0 !---'----+------~ 

"' 

"'" 

I--

J --'wE 

J . ..,LI ____ J 

0110 111$1HG EOGE INDIC...TES THAT THE OAU. REGISTER IS EMPTY 
DAO F4LllNG EDGE INOICATES THAT THE DATA l'lf:GISTEA IS LOADED 
INTRO IIISING EDGE INOtCATE THE EIIIO OF " COMMAND 
INTR0 F.o.t.LING EOGE INDICATES ,,..., THE COlltMANO REGISTER 
IS -•TTEN TO 

WRITE ENABLE TIMING 
INPUT DATA TIMING· 

SYMBOL CHARACTERISTIC MIN. 

Tpw Raw Read Pulse Width 100 

tbc Raw Read Cycle Time 1500 

Tc RCLK Cycle Time 1500 

Tx, RCLK hold to Raw Read 40 

Tx, Raw Read hold to RCLK 40 

iiiw AfAO 

RCllC 

DISKETTE 
8" 
8" 
5" 
5" 

TYP. 

200 

2000 

2000 

I ... I ' '•• -----1 I-

LJ LJ 
7 '.. I:='., ----l 

I I I 
. 

i----" I " --j 
' 
I " 

NOMINAL 

MODE ODEN CLK T, T, T, 
MFM 0 2MHz 1 •• 1 •• 2 •• 
FM 1 2MHz 2 •• 2µS 4µs 

MFM 0 1 MHz 2µS 2µS 4 µS 

FM 1 1 MHz 4 µS 4 •• 8 •• 

INPUT DATA TIMING 

MAX. UNITS CONDITIONS 

nsec See Note 1 

nsec 1800 ns@ 70'C 

nsec 1800 ns@ 70'C 

nsec See Note 1 

nsec See Note 1 

WRITE DATA TIMING: (ALL TIMES DOUBLE WHEN CLK = 1 MHz) (SeeNote6, Page21) 

SYMBOL CHARACTERISTICS MIN. TYP. MAX. UNITS CONDITIONS 

Twp Wrote Data Pulse Width 500 650 nsec FM 
200 350 nsec MFM 

Twg Wrote Gate to Wrote Data 2 µsec FM 
1 µsec MFM 

Tbc Wrote data cycle Time 2,3, or4 µsec :tCLK Error 
Ta Early (Late) to Wrote Data 125 nsec MFM 
Th Early (Late) From 125 nsec MFM 

Wrote Data 
Twf Wrote Gate off from WD 2 µsec FM 

1 µsec MFM 

Twdl WO Vahd to Clk 100 nsec CLK=1 MHZ 
50 nsec CLK=2 MHZ 

Twd2 WO Valid after CLK 100 nsec CLK=1 MHZ 
30 nsec CLK=2 MHZ 

19 



CLK 

::::.. ,7L----------11 
r--- 250 NS 

WO IW'a;J I WEA 

·I 
L 

CLK r·" ·1· ... -1 
,,.,HZ) -.. _____ __,I 1· L __ 
(ODEN= 0) ,_ • ~ 

WO ___ __._f$0~_,_,01~ i l?V& 
Twd -l I ~ T-

wo MUST HAVE RISING EOGE IN FIRST SHADED AREA AND TRAILING 
EDGE IN SECOND SHADED AREA. 

WRITE DATA/CLOCK RELATIONSHIP 

WRITE DATA TIMING 

MISCELLANEOUS TIMING: (Times Double When Clock = 1 MHz! (See Note 6, Page 21) 

SYMBOL CHARACTERISTIC MIN. TYP. MAX. UNITS CONDITIONS 

TCD, Clock Duty (low) 230 250 20000 nsec 
TCD2 Clock Duty (high) 200 250 20000 nsec 
TSTP Step Pulse Output 2or4 µsec SeeNote5 
TDIR Dir Setup to Step 12 µsec ±CLKERROR 
TMR Master Reset Pulse Width 50 µsec 
TIP Index Pulse Width 10 µsec 

SeeNote5 
TWF Write Faull Pulse Width 10 µsec 

0 



j 

., 

.. 
f------• .. --1 .. 
I-- '., --1 

"' 
I-- '., -----l 

~Tcvc-f 

"' 7IL -i:r-1--
_J "'"" I J •~---ou1c vo.. ! 

VOl -R1Ro:1'-

I- ·~- -1• .. ,l---l•.,,1-- I- •o,., -l•s•PI--
$l~P nn n ,o, _____J L__J y I--------' L-

MISCELLANEOUS TIMING 
•FROM STEP RATE TABLE 

NOTES: 
1 . Pulse width on RAW READ (Pin 27) is normally 

100-300 ns. However, pulse may be any width if 
pulse is entirely within window. If pulse occurs in both 
windows, then pulse width must be less than 300 ns 
for MFM at CLK = 2 MHz and 600 ns for FM at 2 
MHz. Times double for 1 MHz. 

2. A PPL Data Separator is recommended for 8" MFM. 
3. tbc should be 2 µs, nominal in MFM and 4 µ,s nominal 

in FM. Times double when CLK = 1 MHz. 
4. RCLK may be high or low during RAW READ (Polarity 

is unimportant). 
5. Times double when clock = 1 MHz. 

6. Output timing readings are at V01. = o.av and VOH = 
2.0v. 

Table 4. STATUS REGISTER SUMMARY 

ALL TYPE I READ READ READ WRITE WRITE 
BIT COMMANDS ADDRESS SECTOR TRACK SECTOR TRACK 

S7 NOT READY NOT READY NOT READY NOT READY NOT READY NOT READY 
S6 WRITE 0 0 0 WRITE WRITE 

PROTECT PROTECT PROTECT 

S5 HEAD LOADED 0 RECORD TYPE 0 WRITE FAULT WRITE FAULT 

S4 SEEK ERROR RNF RNF 0 RNF 0 

S3 CRCERROR CRC ERROR CRC ERROR 0 CRC ERROR 0 
S2 TRACK0 LOST DATA LOST DATA LOST DATA LOST DATA LOST DATA 

S1 INDEX PULSE DRQ DRQ DRQ ORO DRQ 

so BUSY BUSY BUSY BUSY BUSY BUSY 

STATUS FOR TYPE I COMMANDS 

BIT NAME MEANING 

S7 NOT READY This bit when set indicates the drive is not ready. When reset it indicates that the drive 
is ready. This bit is an inverted copy of the Ready input and logically 'ored' with MR. 

S6 PROTECTED When set, indicates Write Protect is activated. This bit is an inverted copy of WRPT 
input. 

S5 HEAD LOADED When set, tt indicates the head is loaded and engaged. This bit is a logical "and" of 
HLD and HL T signals. 

S4 SEEK ERROR When set, the desired track was not verified. This bit is reset to 0 when updated. 

S3 CRC ERROR CRC encountered in ID field. 

S2TRACK 00 When set, indicates Read/Write head is positioned to Track 0. This bit is an inverted 
copy of the fmXi input. 

S1 INDEX Y'!'hen set, indicates index mark detected from drive. This bit is an inverted copy of the 
IP input. 

SO BUSY When set command is in progress. When reset no command is in progress. 

21 



STATUS FOR TYPE II AND Ill COMMANDS 
BIT NAME MEANING 

S7 NOT READY This bit when set indicates the drive is not ready. When reset, it indicates that the drive 
is ready. This bit is an inverted copy of the Ready input and 'ored' with MR. The Type II 
and Ill Commands will not execute unless the drive is ready. 

S6 WRITE PROTECl On Read Record: Not Used. On Read Track: Not Used. On any Write: It indicates a 
Write Protect. This bit is reset when updated. 

S5 RECORD TYPE/ On Read Record: It indicates the record-type code from data field address mark. 
WRITE FAULT 1 = Deleted Data Mark. O = Data Marl<. On any Write: It indicates a Write Fault. This bit 

is reset when updated. 

S4 RECORD NOT When set, it indicates that the desired track, sector, or side were not found. This bit is 
FOUND(RNF) reset when updated. 

S3 CRC ERROR If S4 is set, an error is found in one or more ID fields; otherwise it indicates error in 
data field. This bit is reset when updated. 

S2 LOST DATA When set, it indicates the computer did not respond to DRQ in one by1e time. This bit is 
reset to zero when updated. 

S1 DATA REQUEST This bit is a copy of the DRQ output. When set, it indicates the DR is full on a Read 
Operation or the DR is empty on a Write operation. This bit is reset to zero when up-
dated. 

SO BUSY When set, command is under execution. When reset, no command is under execution. 

ELECTRICAL CHARACTERISTICS 

Absolute Maximum Ratings C,N & Gour = 15 pF max with all pins grounded except 
one under test. Voo with repect to Vss(ground): + 15to -0.3V 

Voltage to any input with respect to Vss = + 15 to - 0.3V 
Ice = 60 MA (35 MA nominan 
loo = 15 MA (10 MA nominan 

OPERATING CHARACTERISTICS (DC) 

Operating temperature = o•c to 7o•c 
Storage temperature = - ss•c to + 125•c 

TA = 0°C to 70°C, Voo = + 12V ± .6V, Vss = 0V, Vee = + 5V ± .25V 

SYMBOL CHARACTERISTIC MIN. MAX. UNITS CONDITIONS 

la. Input Leakage 10 µA V1N = Voo .. 
b. Output Leakage 10 µA Voor = Voo 
v .. Input High Voltage 2.6 V 
V1L Input Low Voltage 0.8 V 
VOH Output High Voltage 2.8 V lo= -100µA 
VOL Output Low Voltage 0.45 V lo= 1.6 mA• 
Po Power Dissipation 0.6 w 

•1792 and 1794 lo = 1.0 mA 
•*Leakage conditions are for input pins without internal pull-up resistors. Pins 22, 23, 33, 36, and 37 have pull-up resistors. 
See Tech Memo #115 for testing procedures. 

22 

• 

0 



j 

\ 
_) 

\ ., 

.015 
lOOMAX 2.02S ___ -MIN 

tc MAX ~It_ 
T ~ M MIN 

-l i.- ,oo TYP ~~ .°'' _J i__+ 
014 055 

02' 

40 LEAD CERAMIC "A" or "Al" 

I--·''°-' /:_MAX....::_j 

r;::_--~~----~SilN ,;:-) .610MAX 14-
,MMWvvWWWWW-il MIN pa~ 
~ ~ ,~~L o .. ::-11-+, I-~ 

.021 

40 LEAD CERDIP "CL" 

r _,oao .O<Or -, ::::. r 
f'« MAX ~-120MINI 

rWW\iWWWWW\KNW F, 
'..-1 J._ 100;,jYP L .~ .j I- I+-~~ 

.014 

.02• 

40 LEAD RELPACK "B" or "BL" 

40 LEAD PLASTIC "P'' or "PL" 

23 



Information furnished by western 01g1tal Corporation 1s believed to be accurate and rehable However, no respons1b1hty 1s assumed by Western Digital 
Corporation lor 11s use nor tor any mlrmgements ol patents or other nghls ol thud parties which may result from 11s use No ltcense 1s granted by 
,mphcallon or otherwise under any patent or patent nghts of Western 01g1tal Corporatton Western D1g1tal Corporation reserves the nght to change 
spec1f1cat,ons at anyhme w1thou1 notice 

WESTERN DIGITAL 2445 McCABE WAY 
CORPOR,4T 0 N IRVINE, CALIFORNIA 92714 (714) 557-3550, TWX 910-595-1139 

24 Pnnled ,n U S A 

• 

0 



) 

., 

TECHNICAL MEMO WESTERN D/5/TAL 

MEMO: 169 

CORPORA Ti ON 

2445 McCabe Way 
livtne, Cahforn1a 92714 
(714) 557-3550 TWX 910-595-1139 

DEVICE: WDl 770/ 1772/ 1 773 

TITLE: Preliminary Data Sheet Update 

DATE: 8/29/83 

_, _______ , _____________ , __________ .._ __ , ________________ _ 
The following information represents updates to the 

current WD1770/72/73 Preliminary Data sheet. These updates 
are performance enhancements. 

1. 

2. 

3. 

4. 

TRE (Page 19) Changed from MIN lS0NS to MIN 200NS. 

TAH (Page 19) Changed from MIN 20NS to l0NS. 

TWE (Page 19) Changed from MIN lS0NS to MIN 200NS. 

H bit in Command (Page 6 last paragraph) 
Changed from: 

Changed to: 

"If the hFlag is set and motor on 
line (Pin 20)" 

"If the hFlag is NOT set and motor 
on line (Pin 20)_"_ 



WESTERN DIGITAL 
C 0 R P 0 R A T I 0 N 

WD1773 5¼" Floppy Disk Controller/Formatter 

FEATURES 
• 100% SOFTWARE COMPATIBILITY WITH 

WD1793 

• BUILT-IN DATA SEPARATOR 

• BUILT-IN WRITE PRECOMPENSATION 

• SINGLE (FM) AND DOUBLE (MFM) DENSllY 

• 28 PIN DIP, SINGLE +5V SUPPLY 
• TTL COMPATIBLE INPUTS/OUTPUTS 

• 128, 256, 512 OR 1024 SECTOR LENGTHS 
• 8-BIT B~DIRECTIONAL HOST INTERFACE 

DESCRIPTION 
The WD1m Is an MOS/LSI device which perfoons 
the lunctians al a 5 ¼ • Floppy Disk Controlled 
Fonnatter. It is fully software compatible with 
the Western Digital WD1793-02, allowing the 
designer to reduce parts count and board size an an 
existing WD1793 based design without software 
modifications. 
With the exception of the enable Precomp/Ready 
line, the WD1m is identical to the WD1770 con
troller. This line serves as both a READY input from 
the drive during READ/STEP operations, and as a 
Write Precompensatian enable during Write opera
tions. A built-in digital data separator virtually 
eliminates all external components associated with 
data recovery in p,evlous designs. 
The WD1m Is Implemented In NMOS slllcan gate 
technology and is available in a 28 pin, dua~in-line 
package. 

~ INTRQ 

R/W ORQ 
AO ODEN 
Al -DALO IP 

0AL1 TROO 
DAL.2 WO 
DAL3 WG 
DAL4 ENPIRDY 
OAL5 iio 
DAL6 CLK 
OAL7 OIRC 

MR STEP 
GND Vee 

PIN DESIGNATION 

January, 1984 

0 



i 

) 

., 

PIN DESCRIPTION 

PIN 
NUMBER PIN NAME MNEMONIC 

1 CHIP SELECT 

2 READ/WRITE R/W 

3,4 

5-12 

13 

14 
15 
16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

ADDRESS 0, 1 AO, A 1 

DATA ACCESS LINES DALO-DAL7 
OTHROUGH7 

MASTER RESET MR 

GROUND GND 
POWER SUPPLY Vee 
STEP STEP 

DIRECTION DIRC 

CLOCK CLK 

READ DATA 

ENABLE PRECOMP/ ENP/RDY 
READY LINE 

WRITE GATE WG 

WRITE DATA WO 

TRACK 00 TROO 

WRITE PROTECT WPRT 

DOUBLE DENSITY ODEN 
ENABLE 

2 

FUNCTION 
A logic low on this input selects the chip and 
enable Host communication with the device. 
A logic high on this i~ut controls the 
placement of data on the 0007 lines from a 
selected register, while a logic low causes a 
write operation to a selected register. 
These two inputs select a register to Read/Write 
data: 
CS A1 AO R/W = 1 
0 
0 
0 
0 

0 
0 
1 
1 

O Status Reg 
1 TrackReg 
O SectorReg 
1 DataReg 

Command Reg 
Track Reg 
Sector Reg 
Data Reg 

Eight bit bidirectional bus used for transfer of 
data, control, or status. This bus is enabled by 
CS and R/W. Each line will drive one TTL load. 
A logic low pulse on this line resets the device 
and initializes the status register. Internal pull
up. 
Ground. 
+ 5V ± 5% power supply input. 
The Step outl2!!!_ contains a pulse for each step 
of the drive's R/W head. 
The Direction output is high when stepping in 
towards the center of the diskette, and low 
when stepping out. 
This input requires a free-running 40 to 60% 
duty cycle clock (for internal timing) at 8 MHZ 
±1%. 

This active low input is the raw data line 
containing ooth clock and data pulses from the 
drive. 
Serves as a READY input from the drive during 
READ/STEP operations and as a Write Precomp 
enable during write operations. 
This output is made valid prior to writing on the 
diskette. 
FM or MFM clock and data pulses are placed on 
this line to be written on the diskette. 
This active low input informs the WD1773 that 
the drive's R/W heads are positioned over Track 
zero. 
This active low input informs the WD1773 when 
the physical index hole has been encountered 
on the diskette. 
This input is sampled whenever a Write 
Command is received. A logic low on this 
line will prevent any Write Command from 
executing. Internal pull-up. 

This input pin selects either ~ngle (FM) or 
double (MFM) density. When DD N = 0, double 
density is selected. Internal pull-up . 



PIN DESCRIPTION (CONTINUED) 

PIN 
NUMBER PIN NAME MNEMONIC 

27 DATA REQUEST ORO 

28 INTERRUPT REQUEST INTRO 

)~MUXI:- READY 
Pl 

IE.MP/RO ROY I I 

B 

CLK WG ,. 
' WO 

H 5¼" 
0 00-07 lffi 
s , 

AO ' 
F 

T L 
A1 0 

I WD1773 
p 

N ~ jp p 
T 
E 

RIW 'fi'iiiii y 

R Im Wl'RT 0 
F R 
A I 
C ORO DIRC V 
E E 

INTRO STEP 

+5 GNO Vee 

! ~1 L •• v 
: ODEN= 

WD1TT3 SYSTEM BLOCK DIAGRAM 

ARCHITECTURE 
The Floppy Disk Formatter block diagram is il
lustrated on page 4. The primary sections include 
the parallel processor interface and the Floppy Disk 
interface. 

Data Shift Register - This 6-blt register assembles 
serial data from the Read Data input (RD) during Read 
operations and transfers serial data to the Write Data 
output during Write operations. 
Data Register - This 6-bit register is used as a 
holding register during Disk Read and Write opera
tions. In Disk Read operations, the assembled data 
byte is transferred in parallel to the Data Register 
from the Data Shift Register. In Disk Write operations, 
information is transferred in parallel from the Data 
Register to the Data Shift Register. 
When executing the Seek command, the Data Regis
ter holds the address of the desired Track position. 

3 

FUNCTION 

This active high output indicates that the Data 
Register is full (on a Read) or empty (on a Write 
operation). 
This active high output is set at the completion 
of any command or reset a read of the Status 
Register. 

This register is loaded from the DAL and gated onto 
the DAL under processor control. 
Track Register - This 6-bit register holds the track 
number of the current Read/Write head position. It is 
incremented by one every time the head is stepped in 
and decremented by one when the head is stepped 
out (towards track 00). The contents of the register 
are compared with the recorded track number in the 
ID field during disk Read, Write, and Verify opera
tions. The Track Register can be loaded from or 
transferred to the DAL. This Register should not be 
loaded when the device is busy. 
Sector Register (SR) - This 6-bit register holds the 
address of the desired sector position. The contents 
of the register are compared with the recorded sector 
number in the ID field during disk Read or Write 
operations. The Sector Register contents can be 
loaded from or transferred to the DAL This register 
should not be loaded when the device is busy. 
Command Register (CR) - This 6-bit register holds 
the command presently being executed. This register 
should not be loaded when the device is busy unless 
the new command is a force interrupt. The command 
register can be loaded from the DAL, but not read 
onto the DAL 
Status Register (STR) - This 6-bit register holds 
device Status information. The meaning of the Status 
bits is a function of the type of command previously 
executed. This register can be read onto the DAL, but 
not loaded from the DAL 
CRC Logic - This logic is used to check or to 
generate the 16-bit Cyclic Redundancy Check (CRC). 
The polynomial is: 
G(x) = x16 + x12 + x5 + 1. 
The CRC includes all information starting with the 
address mark and up to the CRC characters. The 
CRC register is preset to ones prior to data being 
shifted through the circuit. 
Arithmetic/Logic Unit (ALU) - The ALU is a serial 
comparator, incrementer, and decrementer and is 
used for register modification and comparisons with 
the disk recorded ID field. 

• 

0 

-



) 

\ ., 

(DAL) 

DATA OUT 
BUFFERS 

-

DATA 
REG 

ORO 
INTRO 

MA 
~ 

RIW 

AM DETECTOR 

CRCLOGIC 

COMPUTER PLA 

DATA '---;:::===:::,---, SEPARATOR 

WRITE 
PRECOMP 

DISK 

STATUS 
REG 

WO 

ENP 

WG 

WPRT 

iP 
TROO 

INTERFACE 
CONTROL 

CONTROL 
CONTROL 

INTERFACE 
AO CONTROL (240X 19) CONTROL STEP 

Al DIAC 
-

ROY 
CLK(8MHZ) 

= 
WD1n3 BLOCK DIAGRAM 

Timing and Control - All computer and Floppy Disk 
interface controls are generated through this logic. 
The internal device timing is generated from an exter
nal crystal clock. The wo1n3 has two different 
modes of operation according to the state of ODEN. 
When ODEN = 0, double density (MFM) is enabled. 
When ODEN = 1, single density is enabled. 

AM Detector - The address mark detector detects 
ID, data and index address marks during read and 
write operations. 

Data Separator - A digital data separator consisting 
of a ring shift register and data window detection 
logic provides read data and a recovery clock to the 
AM detector. 

.. 

PROCESSOR INTERFACE 
The interface to the processor is accomplished 
through the eight Data Access Lines (DAL) and 
associated control signals. The DAL are used to 
transfer Data, Status, and Control words out of, or in
to the WO1 n3. The DAL are three state buffers that 
are enabled as output drivers when Chip Select (CS) 
and R/W = 1 are active or act as input receivers when 
CS and R/W = 0 are active. 
When transfer of data with the Floppy Disk Controller 
is required by the host processor, the device address 
is decoded and CS is made low. The address bits A 1 
and AO, combined with the signal R/W during a Read 
operation or Write operation are interpreted as select
ing the following registers: 



A1 · AO 
0 0 
0 1 
1 0 
1 1 

READ (R/W-1) 
Status Register 
Track Register 
Sector Register 
Data Register 

WRITE (R/W- 0) 
Command Register 
Track Register 
Sector Register 
Data Register 

During Direct Memory Access (DMA) types of data 
transfers between the Data Register of the WD1773 
~nd the processor, the Data Request (DAO) output 
Is used In Data Transfer control. This signal also 
appears as status bit 1 during Read and Write 
operations. 
On Disk Read operations the Data Request is acti
vated (set high) when an assembled serial input byte 
is transferred in parallel to the Data Register. This bit 
is cleared when the Data Register is read by the pro
cessor. It the Data Register is read after one or more 
characters are lost, by having new data transferred in
to the register prior to processor readout, the Lost 
Data bit is set in the Status Register. The Read opera
tions continues until the end of sector is reached. 
<?n Disk Write operations the Data Request is ac
tivated when the Data Register transfers its contents 
to the Data Shift Register, and requires a new data 
byte. II is reset when the Data Register is loaded with 
new data by the processor. It new data is not loaded 
at the time the next serial byte is required by the 
Floppy Disk, a byte of zeroes is written on the 
diskette and the Lost Data is set in the Status 
Register. 
At the completion of every command an INTRO is 
generated. INTRO is reset by either reading the 
status register or by loading the command register 
with a new command. In addition, INTRO is gen
erated if a Force Interrupt command condition is met. 
The WD1773 has two modes of operation according 
to th~ state ODEN (Pin 26). When ODEN = 1, single 
density is selected. In either case, the CLK input (Pin 
18) isat8 MHZ. 

GENERAL DISK READ OPERATIONS 
Sector lengths of 128, 256, 512 or 1024 are obtainable 
in either FM or MFM formats. For FM, ODEN should 
be placed to logical "1 :' For MFM formats, ODEN 
should be placed to a logical "O:' Sector lengths are 
determined at format time by the fourth byte in the 
"ID" field. 

SECTOR LENGTH TABLE 
SECTOR LENGTH NUMBER OF BYTES 

FIELD (Hs:YI IN SECTORIDECIMAI 1 

00 128 
01 256 
CR 512 
03 1024 

The number of sectors per tract as tar as the WD1773 
is concerned can be from 1 to 255 sectors. The 

5 

number of tracks as far as the WD1773 is concerned 
is from o to 255 tracks. 

GENERAL DISK WRITE OPERATION 
When writing is to take place on the diskette the 
Write Gate (WG) output is activated, allowing current 
to flow into the Read/Write head. As a precaution to 
erroneous writing the first data byte must be loaded 
into the Data Register in response to a Data Request 
from the device before the Write Gate signal can be 
activated. 
Writing is inhibited when the Write Protect input is a 
logic low, in which case any Write command Is im
mediately terminated, an interrupt is generated and 
the Write Protect status bit is set. 
For Write operations, the WD1773 provides Write 
Gate (Pin 21) to enable a Write condition, and Write 
Data (Pin 22) which consists of a series of active high 
pulses. These pulses contain both Clock and Data in
formation in FM and MFM. Write Data provides the 
unique missing clock patterns tor recording Address 
Marks. 
If Precomp Enable (ENP) is active when WG is 
asserted, automatic Write Precompensation takes 
place. The outgoing Write Data stream is delayed or 
advanced from nominal by 125 nanoseconds ac
cording to the following table: 

PATTERN 
X 1 1 
X 0 1 
0 0 0 
1 0 0 

0 
1 
1 
0 

MFM FM 
Ea~y N/A 
Late N/A 
Early N/A 
Late N/A 

Next Bit to be sent 
Current Bit sending 
Previous Bits sent 

Precompensation is typically enabled on the inner
most tracks where bit shifts usually occur and bit 
density is at its maximun. 

COMMAND DESCRIPTION 
The WD1773 will accept eleven commands. Com
mand words should only be loaded in the Command 
Register when the Busy status bit is oft (Status bit 0). 
The one exception is the Force Interrupt command. 
Whenever a command is being executed, the Busy 
status bi! is set. When a command is completed, an 
interrupt Is generated and the Busy status bit is reset. 
The Status Register indicates whether the completed 
command encountered an error or was fault tree. For 
ease of discussion, commands are divided into tour 
types. Commands and types are summarized in 
Table 1. 

0 



) 

\ ., 

FLAG SUMMARY 

COMMAND 
TYPE 

u 

n 

II & Ill 

II & Ill 

II 

II 

" 
IV 

TABLE 1. COMMAND SUMMARY 

BITS 
rTYPE COMMAND 7 6 5 4 3 2 1 0 

I 

I 
I 
I 
II 
II 
Ill 
Ill 
Ill 
IV 

BIT 
NO(S) 

0, 1 

2 

3 

4 

0 

1 

1 

2 

3 

3 

4 

Restore 0 0 
Seek 0 I 0 
Step 0 0 
Step-in 0 1 
Step-out 0 1 
Read Sector 1 0 
Write Sector 1 0 
Read Address 1 1 
Read Track 1 1 
Write Track 1 1 
Force Interrupt 1 1 

r1 ro = Stepping Motor Rate 
See Table 3 for Rate Summary 

0 
0 
1 
0 
1 
0 
1 
0 
1 
1 
0 

0 h V r1 ro 
1 h V r1 ro 
T h V r1 ro 
T h V r1 ro 
T h V r1 ro 
m L E u 0 
m L E u ao 
0 0 E u 0 
0 0 E u 0 
1 0 E u 0 
1 13 12 11 lo 

DESCRIPTION 

V = Track Number Verify Flag V = 0, No verify 

h = Don't Care 

T = Track Update Flag 

ao = Data Address Mark 

C = Side Compare Flag 

U = Update SSO 

E = 15 MS Delay 

S = Side Compare Flag 

L = Sector Length Flag 

m = Multiple Record Flag 

V = 1, Verify on destination track 

T = 0, No update 
T = 1, Update track register 

ao = 0, FB (DAM) 
ao = 1, FB (deleted DAM) 

C = o, Disable side compare 
C = 1, Enable side compare 

U = o, Update SSO to 0 
U = 1, Update SSO to 1 

E = 0, No 30 MS delay 
E =1,15MSdelay 

S = 0, Compare for side 0 
s = 1, Compare for side 1 

LSB's Sector Length in ID Field 
00 01 10 11 

L - 0 256 512 1024 128 
L = 1 128 256 512 1024 

m = 0, Single record 
m = 1, Multiple records 

Ix = Interrupt Condition Flags 
lo = 1 Not Ready To Ready Transition 
11 = 1 Ready To Not Ready Transition 
12 = 1 Index Pulse 
13 = 1 Immediate Interrupt, Requires A Reset 
13-11 = 0TerminateWith Nolnterrupt(INTRQ) 

*NOTE: See Type IV Command Descnpt,on for further Informat1on . 

• 



TYPE I COMMANDS 
The Type I Commands include the Restore, Seek, 
Step, Step-In, and Step-Out commands. Each of the 
Type I Commands contains a rate field (ro r1), which 
determines the stepping motor rate as defined in 
Table 3. 

A 4 µS (MFM) or 8 µs (FM) pulse is provided as an 
o~tput to the drive. For every step pulse issued, the 
dnve moves one track location in a direction deter
mined by the direction output. The chip will step the 
drive in the same direction it last stepped unless the 
command changes the direction. 

The Direction signal is active high when stepping in 
and low when stepping out. The Direction signal is 
valid 24 or 48 µsec before the first stepping pulse is 
generated. 

When a Seek, Step or Restore command is executed 
an optional verification of Read-Write head position 
can be performed by settling bit 2 N = 1) in the 
command word to a logic 1. The verification opera
tion begins at the end of the 30 msec settling time. 
The track number from the first encountered ID Field 
is compared against the contents of the Track Regis
ter. If the track numbers compare and the ID Field 
Cyclic_ Red_undancy Check (CRC) is correct, the verify 
operation Is complete and an INTRO is generated 
with no errors. If there is a match but not a valid CRC, 
the CRC error status bit is set (Status bit 3), and the 
next encountered ID field is read from the disk for the 
verification operation. 

The WD1773 must find an ID field with correct track 
number and correct CRC within 5 revolutions of the 
media; otherwise the seek error is set and an INTRO 
is generated. If V = 0, no verification is performed. 

RESTORE (SEEK TRACK 0) 
Upon _receipt of this command the Track 00 (TROO) 
input Is sampled. If 'i'Riio is active low indicating the 
Read-Write head is positioned over track 0, the Track 
Register i~ded with zeroes and an interrupt is gen
erated. If TROO is not active low, stepping pulses at a 
rate specified by the r1 ro field are issued until the 
TROO input is activated. At this time the Track 
Register is loaded with zeroes and an interrupt is 
generated. If the iROO input does not go active low 
after 255 stepping pulses, the WD1773 terminates 
operation, interrupts, and sets the Seek error status 
bit, providing the V flag is set. A verification operation 
also takes place if the V flag is set Note that the 
Restore command is executed when ~ goes from 
an active to an inactive state and that the ORO pin 
stays low. 

SEEK 
This command assumes that the Track Register 
contains the track number of he current position of 
the Read-Write head and the Data Register contains 
the desired track number. The WD1773 will update 
the Track register and issue stepping pulses in the 
appropriate direction until the contents of the Track 

7 

register are equal to the contents of the Data Reg
ister (the desired track location). A verification 
operation takes place if the V flag is on. An interrupt 
is generated at the completion of the command. 
Note: When using multiple drives, the track register 
must be updated for the drive selected before seeks 
are issued. 

STEP 
Upon receipt of this command, the WD1773 issues 
one stepping pulse to the disk drive. The stepping 
motor direction is the same as in the previous step 
command. After a delay determined by the r1 ro field, 
a verification takes place if the V flag is on. If the U 
flag is on, the Track Register is updated. An interrupt 
is generated at the completion of the command. 

STEP-IN 
Upon receipt of this command, the WD1773 issues 
one stepping pulse in the direction towards track 76. 
If the U flag is on, the Track Register is incremented 
by one. After a delay determined by the r1 ro field, a 
verification takes place if the V flag is on. An interrupt 
is generated at the completion of the command. 

STEP-OUT 
Upon receipt of this command, the WD1773 issues 
one stepping pulse in the direction towards track 0. If 
the U flag is on, the Track Register is decremented by 
one. After a delay determined by the r1 ro field, a 
verification takes place if the V flag is on. An interrupt 
is generated at the completion of the command. 

TYPE II COMMANDS 
The Type II Commands are the Read Sector and Write 
Sector commands. Prior to loading the Type II Com
mand into the Command Register, the computer 
must load the Sector Register with the desired sector 
number. Upon receipt of the Type II command, the 
busy status Bit is set. The E flag is still active pro
viding a delay of 1 to 30 msec for head settling time. 

When an ID field is located on the disk, the WD1773 
compares the Track Number on the ID field with the 
Track Register. If there is not a match, the next en
countered ID field is read and a comparison is again 
made. If there was a match, the Sector Number of the 
ID field is compared with the Sector Register. If there 
is not a Sector match, the next encountered ID field 
is read off the disk and comparisons again made. If 
the ID field CRC is correct, the data field is then 
located and will be either written into, or read from 
depending upon the command. The WD1773 must 
find an ID field with a Track number, Sector number 
side number, and CRC within five revolutions of the 
disk; otherwise, the Record not found status bit is set 
(Status bit 3) and the command is terminated with an 
interrupt. 

Each of the Type II Commands contains an (m) flag 
which determines if multiple records (sectors) are to 
be read or written, depending upon the command. If 
m = 0, a single sector is read or written and an inter-

• 

0 



i 

) 

ENTER 

NO 

SET BUSY, RESET CRC, 
SEEK ERAOA, ORO, INTRO 

SET 
DIRECTION 

RESET 
DIRECTION 

TYPE I COMMAND FLOW 
rupt is generated at the completion of the command. 
if m = 1, multiple records are read or written with the 
sector register internally updated so that an address 
verification can occur on the next record. The 
WD1TT3 will continue to read or write multiple 
records and update the sector register in numerical 
ascending sequence until the sector register ex
ceeds the number of sectors on the track or until the 
Force Interrupt command is loaded into the Com
mand Register, which terminates the command and 
generates an interrupt. 

For example: If the WD1TT3 is instructed to read 
sector 27 and there are only 26 on the track, the 
sector register exceeds the number available. The 
WD1TT3 will search for 5 disk revolutions, interrupt 
out, reset busy, and set the record not found status 
bit. 
The Type II commands for WD1773 contain side 
compare flags. When C = O (Bit 1) no side compar
ison is made. When C = 1, the LSB of the side num-

8 

YES 

TYPE I COMMAND FLOW 
ber is read off the ID Field of the disk and compared 
with the contents of the (S) flag (Bit 3). If the S flag 
compares with the side number recorded in the ID 
field, the WD1TT3 continues with the ID search. If a 
comparison is not made within 6 index pulses, the 
interrupt line is made active and the Record-Not• 
Found status bit is set. 

READ SECTOR 
Upon receipt of the Read Sector command, the Busy 
status bit Is set, and when an ID field is encountered 
that has the correct track number, correct sector 
number, correct side number, and correct CRC, the 
data field is presented to the computer. The Data 
Address Mark of the data field must be found within 
30 bytes in single density and 43 bytes in double 
density of the last ID field CRC byte; if not, the ID 
field is searched for and verified again followed by 
the Data Address Mark search. If after 5 revolutions 
the DAM cannot be found, the Record Not Found 
status bit is set and the operation is terminated. 



VERIFY 
SEQUENCE 

SET 
CRC 

ERROR 

INTRO 
RES£T 8USY 

INTRO RESET SUSY 

INTAO RESET 8USY 
S£T SEEK ERROR 

RESET 
CRC 

NOTE: ii=iii"f = 0, THEREISN015MSDELAY 
iF fEsl = 1 AND CLK = 1 MHz, THERE IS A 30MS DELAY 

TYPE I COMMAND FLOW 

When the first character or byte of the data field has 
been shifted through the DSR, it is transferred to the 
DR, and ORO Is generated. When the next byte is ac
cumulated in the DSR, it is transferred to the DR and 
another ORO is generated. If the Computer has not 
read the previous contents of the DR before a new 
character is transferred that character is lost and the 
Lost Data Status bit is set. This sequence continues 
until the complete dta field has been inputted to the 
computer. If there is a CRC error at the end of the 
data field, the CRC error status bit is set, and the 
command is terminated (even if it is a multiple record 
command). 

At the end of the Read operation, the type of Data 
Address Mark encountered in the data field is 
recorded in the Status Register (Bit 5) as shown 
below: 

STATUS 
BITS 

1 Deleted Data Mark 
0 Data Mark 

9 

WRITE SECTOR 

Upon receipt of the Write Sector command, the Busy 
status bit is set. When an ID field is encountered that 
has the correct track number, correct sector number, 
correct side number, and correct CRC, a DRO is gen
erated. The WD1773 counts off 11 bytes in single 
density and 22 bytes in double density from the CRC 
field and the Write Gate (WG) output is made active if 
the DRO is serviced (i.e., the DR has been loaded by 

>NTRO 
RESET SUSY 

ENTER 

SET SUSY, RESET ORO, LOST 
DATA, RECORD NOT FOUND, & 

STATUS SITS 5 & 6 INTRO 

NOTE: iFTffi: 0, THEREISN015MS0£LAY 
i1rnf: 1 ANDCLK: 1 MHz, THEREISA30MSOELAY 

TYPE II COMMAND FLOW 

the computer,. If ORO has not been serviced, the 
command is terminated and the Lost Data status bit 
is set. If the ORO has been serviced, the WG is made 
active and six bytes of zeroes in single density and 12 
bytes in double density are then written on the disk. 
At this time the Data Address Mark is then written on 

0 



i 

., 

the disk as determined by the ao field of the 
command as shown below: 

1 
0 

Data Address Mark (Bit 0) 
Deleted Data Mark 
Data Mark 

The WD1773 then writes the data field and gener• 
ates DRQ's to the computer. If the DRQ is not 
serviced in time for continuous writing the Lost 
Data Status Bit is set and a byte of zeroes is 
written on the disk. The command is not ter• 
minated. After the last data byte has been written 
on the disk, the two-byte CRC is computed 
internally and written on the disk followed by one 
byte of logic ones in FM or in MFM. The WG 
output is then deactivated. The INTRO will set 48 
µsec (MFM) or 96 ,..sec (FM) after the last CRC 
byte Is written. For partial sector writing, the 
proper method is to write the data and fill the 
balance with zeroes. By letting the chip fill the 

INTRO RESET BUSY 
SET RECORD-NOT FOUND 

NO 

NO 

NO 

NO 

BRING IN SECTOR LENGTH FIELD 
STORE LENGTH IN INTERNAL 

REGISTER 

SET CAC 
STATUS ERROFI 

TYPE II COMMAND FLOW 

RESET 
CRC 

:.READ 

10 

zeroes, errors may be masked by the lost data 
status and improper CRC Bytes. 

TYPE Ill COMMANDS 

READ ADDRESS 
Upon receipt of the Read Address command, the 
Busy Status Bit is set. The next encountered ID 
field is then read in from the disk, and the six 
data bytes of the ID field are assembled and 
transferred to the DR, and a DRQ is generated for 
each byte. The six bytes of the ID field are 
shown below: 

TRACK 
ADDA 

1 

SIDE SECTOR SECTOR 
NUMBER ADDRESS LENGTH 

2 

PUT RECORD TYPE IN 
STATUS REG 81T 5 

NO 

3 

NO 

4 

READ SECTOR 
SEQUENCE 

CRC CRC 
1 2 

5 6 

INTAQ RESET BUSY 

TYPE II COMMAND FLOW 



DELAY 2 BYTES OF GAP 

OELAY l 8YTES OF GAP 

"" 

WRITE SECTOR 
SEQUENCE 

SET OATA ,os, 
WAITE BYTE 
OF ZEROS 

WftlTECAC 

TYPE II COMMAND 

Although the CRC characters are transferred to 
the computer, the WD1773 checks for validity and 
the CRC error status bit is set if there is a CRC 
error. The Track Address of the ID field is written 
into the sector register so that a comparison can 
be made by the user. At the end of the operation 
an interrupt is generated and the Busy Status is 
reset. 

READ TRACK 
Upon receipt of the READ track command, the Busy 
Status bit Is set. Reading starts with the leading edge 
of the first encountered index pulse and continues 
until the next index pulse. All Gap, Header, and data 
by1es are assembled and transferred to the data reg
ister and DRQ's are generated for each by1e. The 
accumulation of by1es is synchronized to each ad
dress mark encountered. An interrupt is generated at 
the completion of the command. 

This command has several characteristics which 

11 

make it suitable for diagnostic purposes. They are: 
the Read Gate is not activated during the command; 
no CRC checking is performed; gap information is 
included in the data stream; the internal side com
pare is not performed; and the address mark detector 
is on for the duration of the command. Because the 
A.M. detector is always on, write splices or noise may 
cause the chip to look for an A.M. If an address mark 
does not appear on schedule the Lost Data status 
flag is set. 

The ID A.M., ID field, ID CRC bytes, DAM, Data, and 
Data CRC Byles for each sector will be correct. The 
Gap Bytes may be read incorrectly during write-splice 
time because of synchronization. 

WRITE TRACK FORMAmNG THE DISK 
(Refer to section on Type Ill commands for flow 
diagrams.) 

Formatting the disk is a relatively simple task when 
operating programmed 1/0 or when operating under 
DMA with a large amount of memory. Data and gap 
Information must be provided at the computer inter
face. Formatting the disk is accomplished by posi
tioning the R/W head over the desired track number 
and issuing the Write Track command. 

Upon receipt of the Write Track command, the Busy 
Status bit is set. Writing starts with the leading edge 
of the first encountered index pulse and continues 
until the next index pulse, at which time the interrupt 
is activated. The Data Request is activated immedi
ately upon receiving the command, but writing will 
not start until after the first by1e has been loaded into 
the Data Register. If the DR has not been loaded by 
the time the index pulse is encountered the opera
tion is terminated making the device Not Busy, the 
Lost Data Status Bit is set, and the Interrupt is ac
tivated. If a by1e is not present in the DR when 
needed, a by1e of zeroes is substituted. 

This sequence continues from one index mark to the 
next index mark. Normally, whatever data pattern ap
pears in the data register is written on the disk with a 
normal clock pattern. However, if the WD1773 de
tects a data pattern of F5 thru FE in the data register, 
this is interpreted as data address marks with 
missing clocks orCRC generation. 

The CRC generator is initialized when any data byte 
from FB to FE is about to be tranferred from the DR to 
the DSR in FM or by receipt of F5 in MFM. An F7 pat
tern will generate two CRC characters in FM or MFM. 
As a consequence, the patterns F5 thru FE must not 
appear in the gaps, data fields, or ID fields. Also, 
CRC's must be generated by an F7 pattern. 

Disks may be formatted in IBM 3740 or System 34 
formats with sector lengths of 128, 256, 512, or 1024 
by1es. 

TYPE IV COMMANDS 
The Forced Interrupt command is generally used to 

• 

0 



i 

terminate a multiple sector read or write command or 
to insure Type I status in the status register. This 
command can be loaded into the command register 
at any time. If there is a current command under 
execution (busy status bit set) the command will be 
terminated and the busy status bit reset. 

The lower four bits of the command determine the 
conditional interrupt as follows: 

lo = Not-Ready to Ready Transition 
l1 = Ready to Not-Ready Transition 
l2 = Every Index Pulse 
l3 = Immediate Interrupt 

1NTI'IOAESET 
BUSY SET WPf'IT 

SU INTAO 
L05l llATA 

IIESET 8USY 

INTflQ 
IIESEl9U$Y 

TYPE Ill COMMAND WRITE TRACK 

12 

The conditional interrupt is enabled when the cor
responding bit positions of the command (13 - I0) are 
set to a 1. Then, when the condition for interrupt is 
met, the INTRO line will go high signifying that the 
condition specified has occurred. lfl3 - lo are all set 
to zero (HEX DO), no interrupt will occur but any 
command presently under execution will be immedi
ately terminated. When using the immediate interrupt 
condition (13 = 1) an interrupt will be immediately 
generated and the current command terminated. 
Reading the status or writing to the command 
register will not automatically clear the interrupt. The 
HEX DO is the only command that will enable the 

1NTl'IO ,usu eusv 

WFIITE Oi>fl 
IN MFM 

WFIITE2CIIC 
CHARS CLK : f<F 

WAITE FC 
Clll ~ 01 

WRITE FD FE 0A 
AIFBCLll~C7 
INlflALIZE CRC 

WRITE 
BYTE OF ZEIIOS 
SET DATA LOST 

WfllTE 111• IN MFM 
WITH MISSING CLOCK 

INITIALIZE CRC 

WfUTE C2 IN MFM 
\NITH MISSING CLOCK 

WAITE 2CFIC 
CHAFIS 

TYPE Ill COMMAND WRITE TRACK 



immediate interrupt (HEX D8) to clear on a sub
sequent load command register or read status 
register operation. Follow a HEX D8 with DO com
mand. 

Wait 16 µsec (double density) or 32 µsec (single 
density before issuing a new command after issuing 
a forced interrupt. Loading a new command sooner 
than this will nullify the forced interrupt. 

Forced interrupt stops any command at the end of an 
internal micro-instruction and generates INTRO 
when the specified condition is met. Forced interrupt 
will wait until ALU operations in progress are 
complete (CRC calculations, compares, etc.). 

More than one condition may be set at a time. If for 
example, the READY TO NOT-READY condition (11 
= 1) and the Every Index Pulse (12 = 1) are both set, 
the resultant command would be HEX "DA". The 
"OR" function is performed so that either a READY 
TO NOT-READY or the next Index Pulse will cause an 
interrupt condition. 

STATUS REGISTER 
Upon receipt of any command, except the Force 
Interrupt command, the Busy Status bit is set and the 
rest of the status bits are updated or cleared for the 
new command. If the Force Interrupt Command is re
ceived when there is a current command under exe
cution, the Busy status bit is reset, and the rest of the 
status bits are unchanged. If the Force Interrupt com
mand is received when there is not a current com
mand under execution, the Busy Status bit is reset 
and the rest of the status bits are updated or cleared. 
In this case, Status reflects the Type I commands. 

The user has the option of reading the status register 
through program control or using the ORO line with 
DMA or interrupt methods. When the Data register is 
read the DRO bit in the status register and the DRO 
line are automatically reset. A write to the Data 
register also causes both DRO's to reset. 

The busy bit in the status may be monitored with a 
user program to determine when a command is com
plete, in lieu of using the INTRO line. When using the 
INTRO, a busy status check is not recommended be
cause a read of the status register to determine the 
condition of busy will reset the INTRO line. 

The format of the Status Register is shown below: 

Status varies according to the type of command exe
cuted as shown in Table 4. 

13 

Because of internal sync cycles, certain time delays 
must be observed when operating under pro
grammed 1/0. They are: (times double when clock = 
1 MHz) 

Delay Req'd. 
Operation Next Operation FM MFM 

Write to Read Busy Bit 48µs I 24µs I 
Command Reg. (Status Bit 0) ! 
Write to Read Status 64µs I 

32µs I 

Command Reg. Bits 1-7 I 
I 

Write Read Any 32µs I 16µs 
Register Register : 
IBM 3740 FORMAT - 128 BYTES/SECTOR 

Shown below is the IBM single-density format with 
128 bytes/sector. In order to format a diskette, the 
user must issue the Write Track command, and load 
_the data register with the following values. For every 
byte to be written, there is one Data Request. 

NUMBER 
OF BYTES 

40 
6 
1 

~ 
6 
1 
1 
1 
1 
1 
1 

11 
6 
1 

128 
1 

___%1_ 
247 .. 

FF(orOO)' 
00 

HEX VALUE OF 
BYTE WRITTEN 

FC (Index Mark) 
FF(orOO)' 
00 
FE (ID Address Mark) 
Track Number 
Side Number(OO or01) 
Sector Number(1 thru 1A) 
00 (Sector Length) 
F7 (2 CRC's written) 
FF(orOO)' 
00 
FB (Data Address Mark) 
Data (IBM uses E5) 
F7 (2 CRC's written) 
FF(orOO)' 
FF (orOO)' 

•write bracketed field 26 times 
.. Continue writing until WD1773 interrupts out. 

Approx. 247 bytes. 

IBM SYSTEM 34 FORMAT - 256 BYTES/SECTOR 

Shown below is the IBM dual-density format with 256 
bytes/sector. In order to format a diskette the user 
must issue the Write Track command and load the 
data register with the following values. For every byte 
to be written, there is one data request. 

• 

0 



j 

) 

., 

ENTER 

SET BUSY 
RESET STATUS 

BITS 2, 4, 5 

NO 

DELAY 30 MSEC 

NO 

•11 TEST :1: ♦, NO DELAY 

B 

INTRO 
RESET BUSY 

READ 
ADDRESS 

If TEST :!: 1 and CLK :1: 1 MHZ, 30 MS DELAY 

TYPE Ill COMMAND 
Read Track/Address 

14 

NO 

NO 

SHIFT ONE BIT 
INTO DSR 

TRANSFER 
OSR TO DR 

SET 
DAO 

YES 

SET INTRO 
RESET BUSY 

SET LOST 
DATA BIT 



NO 

NO 

SHIFT 1 BYTE 
INTO OSR 

TRANSFER 
BYTE TO DR 

SET ORO 

TRANSFER TRACK 
NUMBER TO SECTOR 

REGISTER 

SET INTRO 
RESET BUSY 

READ ADDRESS 
SEQUENCE 

RESET BUSY 
SET INTRO 
SET ANF 

SETCRC 
ERROR BIT 

TYPE Ill COMMAND 
Read Track/Address 

15 

NUMBER HEX VALUE OF 
OF BYTES BYTE WRITTEN 

80 4E 
12 00 
3 F6 (Writes C2) 
1 FC (Index Mark) 

• 50 4E 
12 00 
3 F5 (Writes A 1) 
1 FE (ID Address Mark) 
1 Track Number(0 thru 4C) 
1 Side Number(0 or 1) 
1 SectorNumber(1 thru 1A) 
1 01 (Sector Length) 
1 F7 (2 CRCs written) 

22 4E 
12 00 
3 F5(WritesA1) · 
1 FB (Data Address Mark) 

256 DATA 
1 F7 (2 CRCs written) 

54 4E 
598** 4E 

*Write bracketed field 26 times 
• *Continue writing until WD1773 interrupts out. 

Approx. 598 bytes. 

1. NON-IBM FORMATS 

Variations in the IBM formats are possible to a 
limited extent if the following requirements are met: 

1) Sector size must be 128,256,512 of 1024 bytes. 

2) Gap 2 cannot be varied from the IBM format. 

3) 3 bytes of A 1 must be used in M FM. 

In addition, the Index Address Mark is not required 
for operation. Gap 1, 3, and 4 lengths can be as short 
as 2 bytes, however PLL lock up time, motor speed 
variation, write-splice area, etc. will add more bytes to 
each gap to achieve proper operation. It is recom
mended that the IBM format be used for highest 
system reliability. 

FM MFM 
Gap I 16bytes FF 32bytes4E 

Gap II 11 bytes FF 22bytes4E 

• 6bytesoo 12bytes00 . 3bytesA1 

Gap Ill** 10bytesFF 24bytes4E 
4 bytesOO 8 bytesOO 

3bytesA1 

Gap IV 16bytesFF 16 bytes4E 

• Byte counts must be exact. 
**Byte counts are minimum, except exactly 3 bytes 

of A 1 must be written. 

• 

0 



' 

-O> 

PHYSICAL INDEX 

411 BYTES FM 
92 BYTES MFM H 

... 
PAE INDEX 

320 BYTE FM 
7.U BYTES FMF 

NOMINAL 

C2" 
38YTES .,. 

ONLY 

IN MFM ONLY 10AM ANO Q,\TAAM 
ARE PRECEDED BY THREE BYTES Of 
A 1 WITH CLOCK TRANSITION 8ETWEEN 
e1rs, ANOSMISStNG 

-

tNOEX AOOAESS MARK 

GAP1 
POST INOEK 
32 BYTE FM 

62 BYTES MFMI 

" 3 BYTES .,. 
""" 

" AECOAO ,o, 
G.lP2 
IDGAP 

17 BYTES FM 
34 BYTE MFM 

u 

DATA 
FIELD 

"'co"' ,o , 

GAP3 
DATA 

33 BYTE FM 
II& BYTE MFM 

" I TRACK I •• , I SECTOA I SECTOR I CAC I c,c 
ADDRESS NUM8EA NUMBER NUMBER LENGTH BYTE 1 BYTE 2 

MARK 

GAP2 

-- J68YTES •-•-• '" '--------,, ,ms ,, "'" 
1- 22 BYTES "'" 

FOAUPOATE """,•,~~!r~UF~:l: ... 

" 

" AECOAO ,o' GAP2 

DATA OR 
OELETEO 

DATA 
ADOAESS 

MARK 

I BYTE 

1 8YTE 

DATA 
AECOFIO 
,o ' 

GAP3 
,o 

RECORD ,o' Gm 
DATA 
FIELD 

RECORD 

USER DATA 

"° ' 

c,c 
BYTE 1 

" 

!4-----» ,ms • I • 
"-WAITE TURHOFFFOfl UPOATE 

Of PREVIOUS DATA FIELD 

-1MCKFUIJR 

c,c 
BYTE 2 

" RECORD 
,o " 

WJ 

' 
DATA 
FIELD 

RECORD ,o" 
iGAP, 



DC ELECTRICAL CHARACTERISTICS 

MAXIMUM RATINGS 

Maximum Voltage to Any Input Storage Temperature . . . . . . . . . - 55°C to + 125°C 
Operating Temperature ...••. o•c to 70°C Ambient with Respect to Vss .•••••...•.•. ( - 15 to - 0.3V) 

DC OPERATING CHARACTERISTICS 

TA = o·c to 70°C, Vss = OV, Vee = + 5V ± .25V 

SYMBOL CHARACTERISTIC MIN. MAX. UNITS CONDmONS 

Ill Input Leakage 10 ,,A VIN= Vee 

IOL Output leakage 10 ,,A vour= Vee 

VIH Input High Voltage 2.0 V 

VIL Input Low Voltage 0.8 V 

VoH Output High Voltage 2.4 V IQ= -100,,A 

VOL Output Low Voltage 0.40 V lo= 1.6mA 

Po Power Dissipation .75 w 
RPU Internal Pull-Up 100 1700 ,,A VIN = OV 

ICC Supply Current 75(Typ) 150 mA 

AC TIMING CHARACTERISTICS 
TA = o·c to 1o·c, vss = ov, vcc = + 5V ± .25V 

READ ENABLE TIMING - RE such that: RNV = 1, CS = 0. 

SYMBOL CHARACTERISTIC MIN. TYP. MAX. UNITS CONDmONS 
TRE RE Pulse Width of CS 200 nsec CL= 50pf 
TORR DRQ Reset from RE 25 100 nsec 

TIRA INTRO Reset from RE 8000 nsec 

TDV Data Valid from RE 100 200 nsec CL= 50pf 

TDOH Data Hold from RE 50 150 nsec CL=50pf 

Note: DRQ and INTRO reset are from rising edge (lagging) of RE, whereas resets are from falling edge (leading) 
of WE. 

WRITE ENABLE TIMING - WE such that: RNV = 0, CS = 0. 

SYMBOL CHARACTERISTIC MIN. TYP. MAX. UNITS CONDmONS 
TAS Setup ADDA to OS 50 nsec 

TSET Setup RNV to CS 0 nsec 

TAH Hold ADDA from CS 10 nsec 

THLD Hold RiW from CS 0 nsec 

TWE WE Pulse Width 200 nsec 

TDRW DRQ Reset from WE 100 200 nsec 

TIRW INTRO Reset from WE 8000 nsec 

TDS Data Setup to WE 150 nsec 

TDH Data Hold from WE 0 nsec 

17 

-

0 



l I 
OALS X VALID x j 0-7 

t=:-~'~j 7 Tov TooH 

cs 
~'-'•• ~ 

TsET-1 ~THLO 

R,IW 

~ ~ I TAs=i ~TAH 

AO, A1 

I I I 
ORO I t-'ORR1 \ 
ORO f4-'oRw1 \ 

) 
REGISTER TIMINGS 

CLK 

I\ I\ I\ I\ 

I I I I 
..Jr 1/2 CLK 1\.... 
EARLY TWP I I 

{\_ Ir I 
1/2 CLKS 

NOMINAL TWP I 
Ji'. 4-1/2 CLKS ~ 

LATE TWP 

WRITE DATA TIMING ., 
18 



WRITE DATA TIMING: 

SYMBOL CHARACTERISTIC MIN. TYP. MAX. UNITS CONDITIONS 

TWG Write Gate to Write Data 4 µsec FM 
2 µsec MFM 

TBC Write Data Cycle Time 4,6,8 µsec 

TWF Write Gate off from WD 4 µsec FM 
2 µsec MFM • TWP Write Data Pulse Width 820 nsec EarlyMFM 

690 nsec NominalMFM 
570 nsec lateMFM 

1380 nsec FM 

INPUT DATA TIMING: 

SYMBOL CHARACTERISTIC MIN. TYP. MAX. UNITS CONDITIONS 

TPW Raw Read Pulse Width 200 3000 nsec 

TBC Raw Read Cycle Time 3000 nsec 

MISCELLANEOUS TIMING: 

SYMBOL CHARACTERISTIC MIN. TYP. MAX. UNITS CONDITIONS 

TCD1 Clock Duty (low) 50 67 nsec (60/40) 

TCD2 Clock Duty (high) 50 67 nsec (40/60) 

TSTP Step Pulse Output 4 µsec MFM 
8 FM 

TDIR Dir Setup to Step 24 µsec MFM 
48 FM 

TMR Master Reset Pulse Width 50 µsec 

TIP Index Pulse Width 20 µsec 

0 
IP 1---------~ ....-----------1 VIH 

MA 1---------~ ,-----------1 VIH 

I STEPIN 
DIRC VoH . Vol _____ _. .,_R1Ro•~ 

J7.___ __ 
l+ro,a+jrsrpj.----!rsr•f4--

STEP 

MISCELLANEOUS TIMING 

19 



i 

., 

Package Diagrams 

28 LEAD PLASTIC "R" or "PH" 28 LEAD CERDIP "CH" 

14-"•-1 I== MAX ....... 1 

r:J 

lnfonnatlon furnished by Western Digital Corporation is believed to be accurate and reliable. However, no responsibility is assumed by Western Digital 
Corporation for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by 
implication or otherwise under any patent or patent rights of Western Digital Corporation. Western Digital Corporation rese,ves the right to change 
specifications at anytime wilhout notice. 

WESTERN DIGITAL 
CORPORAT q "' 

2445 McCABE WAY 
IRVINE, CALIFORNIA 92714 (714) 863-0102, TWX 910-595-1139 

CP-0S/84221/1 ·84 
Pflnled '" u s A 



WESTERN DIGITAL 
C O R P O R A T I O N 

WD9216-00/WD9216-01 
Floppy Disk Data Separator - FDDS 

FEATURES 
• PERFORMS COMPLETE DATA SEPARATION 

FUNCTION FOR FLOPPY DISK DRIVES 
• SEPARATES FM OR MFM ENCODED DATA 

FROM ANY MAGNETIC MEDIA 
• ELIMINATES SEVERAL SSI AND MSI DEVICES 

NORMALLY USED FOR DATA SEPARATION 
• NO CRITICAL ADJUSTMENTS REQUIRED 
• COMPATIBLE WITH WESTERN DIGITAL 179X, 

176X AND OTHER FLOPPY DISK 
CONTROLLERS 

• SMALL 8-PIN DUAL-IN-LINE PACKAGE 
• + 5 VOLT ONLY Po.NER SUPPLY 
• TTL COMPATIBLE INPUTS AND OUTPUTS 

OSKD 

SEPCLK 

REFCLK 

GND 

GENERAL DESCRIPTION 
The Floppy Disk Data Separator provides a low cost 
solution to the problem of converting a single stream 
of pulses from a floppy disk drive into separate Clock 
and Data inputs for a Floppy Disk Controller. 

The FDDS consists primarily of a clock divider, a 
long-term timing corrector, a short-term timing 
corrector, and reclocking circuitry. Supplied in an S
pin Dual-In-Line package to save board real estate, 
the FDDS operates on + 5 volts only and is TTL com
patible on all inputs and outputs. 

The WD9216 is available in two versions; the 
WD9216-00, which is intended for 5¼" disks and the 
WD9216-01 for5¼" and8" disks. 

Vee 

SEPD 

CD1 

coo 

PIN CONFIGURATION 

REFCLK___,. 

coo -CD1 -
OSKD -

CLOCK - +5V 
DIVIDER -GNO 

-DATA/CLOCK PULSE - SEPCLK 
SEPARATION AEGENEAATID• 

LOGIC LOGIC - SEPD -
EDGE 

DETECTION 
LOGIC 

FLOPPY DISK DATA SEPARATOR BLOCK DIAGRAM 

257 

0 



j 

.. 

ELECTRICAL CHARACTERISTICS 
MAXIMUM RATINGS* 
Operating Temperature Range ....... o•c to + 70"C 
Storage Temperature Range ....... -55"C to 125"C 
Positive Voltage on any Pin, 

with respectto ground ................. + 8.0V 
Negative Voltage on any Pin, 

with respectto ground . . . . . . . . . . . . . . . . . - 0.3V 

• Stresses above those listed may cause permanent 
damage to the device. This is a stress rating only 
and functional operation of the device at these or at 
any other condition above those indicated in the 
operational sections of this specification is not 
implied. 

NOTE: When powering this device from laboratory or 
system power supplies, it is important that the 
Absolute Maximum Ratings not be exceeded or 
device failure can result. Some power supplies 
exhibit voltage spikes or "glitches" on their outputs 
when the AC power is switched on and off. In ad
dition, voltage transients on the AC power line may 
appear on the DC output. If this possibility exists it is 
suggested that a clamp circuit be used. 

OPERATING CHARACTERISTICS (TA = o·c to 70°C, Vee = + 5V ± 5%, unless otherwise noted) 

PARAMETER MIN. TYP. MAX. UNITS COMMENTS 

D.C. CHARACTERISTICS 
INPUT VOLTAGE LEVELS 

Low Level VIL 0.8 V 
High Level VIH 2.0 V 

OUTPUT VOLTAGE LEVELS 
Low Level VoL 0.4 V IOL = 1.6mA 
High Level VOH 2.4 V IOH = -100µA 

INPUT CURRENT 
LeakagelIL 10 ,-.A 0.; VIN .; Voo 

INPUT CAPACITANCE 
All Inputs 10 pF 

POWER SUPPLY CURRENT 
100 50 mA 

A.C. CHARACTERISTICS 
Symbol 
Icy REFCLK Frequency 0.2 4.3 MHz WD9216-00 
fey REFCLK Frequency 0.2 8.3 MHz WD9216-01 
ICKH REFCLK High Time 50 2500 ns 
ICKL REFCLK Low Time 50 2500 ns 
tsDON REFCLK to SEPD "ON" Delay 100 ns 
tsDOFF REFCLK to SEPD "OFF" Delay 100 ns 
ISPCK REFCLK to SEPCLK Delay 100 ns 
tDLL DSKD Active Low Time 0.1 100 µS 
tDLH DSKD Active High Time 0.2 100 µS 

•c~"cKL: 
,..CK~ CKI> 

I I REFCLK"'"""" 

i+--- •sooN - ISOOFF 
-
SEPD J 1SPCK -

) 
SEPCLK ,-{tow) 
--DSKD 

Figure 3. AC CHARACTERISTICS 

258 



DESCRIPTION OF PIN FUNCTIONS 

PIN 
NUMBER PIN NAME SYMBOL FUNCTION 

1 Disk Data DSKD Data input signal direct from disk drive. Con-
tains combined clock and data waveform. 

2 Separated Clock SEPCLK Clock signal output from the FDDS derived 
from floppy disk drive serial bit stream. 

3 Reference Clock REFCLK Reference clock input. 

4 Ground GND Ground. 

5,6 Clock Divisor CDO,CD1 CDO and CD1 control the internal clock divider 
circuit. The internal clock is a submultiple of the 
REFCLK according to the following table: 

CD1 CDO Divisor 
0 0 1 
0 1 2 
1 0 4 
1 1 8 

7 Separated Data SEPD SEPD is the data output of the FDDS 

8 Power Supply Vee + 5 volt power supply 

4 MHz CRYSTAL I 
OSCILLATOR 

I I 1MHz 
+4 

l 
AEFCLK REGENERATED DATA CLK mo ANN READ 

FLOPPY DISK DATA WO179X, 176X or Equiv. 
DISK DSKD FLOPPY DISK 

DRIVE WD9216-00. 01 CONTROLLER 
DERIVED CLOCK 

SEPCLK ACLK 
coo CD1 

t t 
GND GND 

Figure 1. 
TYPICAL SYSTEM CONFIGURATION 

(5¼ • Drive, Double Density) 

OPERATION 
A reference clock (REFCLK) of between 2 and 8 MHz 
is divided by the FDDS 10 provide an internal clock. 
The division ratio is selected by inputs CDO and CD1. 
The reference clock and division ratio should be 
chosen per table 1. 

The FDDS detects the leading edges of the disk data 
pulses and adjusts the phase of the internal clock to 
provide the SEPARATED CLOCK output. 

259 

Separate short and long term timing correctors 
assure accurate clock separation. 

The internal clock frequency is nominally 16 times 
the SEPCLK frequency. Depending on the internal 
timing correction, the internal clock may be a 
minimum of 12 times to a maximum of 22 times the 
SEPCLK frequency. 

The reference clock (REFCLK) is divided to provide 
the internal clock according to pins CDO and CD1. 

0 



i 

., 

TABLE 1: 
CLOCK DIVIDER SELECTION TABLE 

DRIVE 
(8" ors¼ "I 

8 
8 
8 

5¼ 
5¼ 

5¼ 
5¼ 
5¼ 

INTCLK 

SEPCLK 

DENSITY 
(DD or SD) 

DD 
SD 
SD 

DD 
DD 

SD 
SD 
SD 

SEPD----~ 
I I 
I I w 

REFCLK 
MHz CD1 

8 0 
8 0 
4 0 

8 0 
4 0 

8 1 
4 0 
2 0 

always two internal clock cycles 

Figure 2. 
See page 725 for ordering information. 

coo 
0 
1 
0 

1 
0 

0 
1 
0 

REMARKS 

} Select either one 

} Select either one 

} Select any one 

Information turn,shed by Western 01g1tal Corporation 1s believed to be accurate and reliable However, no respons1b1hly 1s assumed by Western 01g1tal 
Corporation for ,ts use, nor tor any mfrmgements of patents or other rights of third parties which may result from its use No hcense 1s granted by 
,mpllcat,on or otherwise under any patent or patent rights ot Western D1g1tal Corporation Westem D1g1tal Corporation reserves the right to change 
spec1hcat1ons at anytime without notice 

Pr,n1ec1 ,n US A 



WESTERN DIGITAL 
CORPORATION 

TR1863/TR1865 
Universal Asynchronous Receiver/Transmitter (UART) 

FEATURES 
• SINGLE POWER SUPPLY - + 5VDC 
• D.C. TO 1 MHZ (64 KB) (STANDARD PARl) 

TR1863/5 

• THREE-STATE OUTPUTS 
Receiver Register Outputs 
Status Flags 

• TTL COMPATIBLE 

• FULL DUPLEX OR HALF DUPLEX OPERATION 
• AUTOMATIC INTERNAL SYNCHRONIZATION 

OF DATA AND CLOCK 

• TR1865 HAS PULL-UP RESISTORS ON ALL 
INPUTS 

• AUTOMATIC START BIT GENERATION 
• EXTERNALLY SELECTABLE 

Word Length 
Baud Rate 
Even/Odd Parity (ReceiverNerification -
Transmitter/Generation) 
Parity Inhibit 
One, One and One-Half, or Two Stop Bit 
Generation (1 ½ at 5 Bit Level) 

• AUTOMATIC DATA RECEIVEDfTRANSMITTED 
STATUS GENERATION 
Transmission Complete 
Buffer Register Transfer Complete 
Received Data Available 
Parity Error 
Framing Error 
Overrun Error 

• BUFFERED RECEIVER AND TRANSMITTER 
REGISTERS 

Vee TAC 
NC EPE 

Vss 3 WLS1 

APPLICATIONS 
• PERIPHERALS 
• TERMINALS 
• MINI COMPUTERS 
• FACSIMILETRANSMISSION 
• MODEMS 
• CONCENTRATORS 
• ASYNCHRONOUS DATA MULTIPLEXERS 
• CARD AND TAPE READERS 
• PRINTERS 

• DATASETS 
• CONTROLLERS 
• KEYBOARD ENCODERS 
• REMOTE DATA ACQUISITION SYSTEMS 
• ASYNCHRONOUS DATA CASSETTES 

RAD WLS2 
RRe SBS 

ARD RECEIVER HOLDING 
REGISTER 

RR7 Pl 
RRj; CAL 
RR5 TRe 
RR4 TR7 
RR3 TRj; 
RR2 TR5 
RR1 TR, 

PE TR3 
FE TR2 
OE TR1 

SFD TAO 
ARC TRE 
DAR THAL 

DR THRE 
RI MR 

PIN CONNECTIONS 

--'-'R'--I --i RECEIVER REGISTER 

ARC 
DR 
DAR 
OE 
FE 
PE 
SFD 

RECEIVER 
TIMING AND 
CONTROL 

Vcc(+SV) 

V55(GND) 

a: 
::; 

CONTROL 
REGISTER 

TR1863/TR1865 BLOCK DIAGRAM 

321 

TRANSMITTER 
TIMING AND 

1---1-iCONTROL 

THAL 

TAO 

TAC 
THRE 

TRE 

• 

0 



) 

GENERAL DESCRIPTION 
The Universal Asynchronous Receiver/Transmitter 
(UARl) is a general purpose, programmable or 
hardwired MOS/LSI device. The UART is used to 
convert parallel data to a serial data format on the 
transmit side, and converts a serial data format to 
parallel data on the receive side. 
The serial format in order of transmission and 
reception is a start bit, followed by live to eight data 
bits, a parity bit (ii selected) and one, one and one
hall, or two stop bits. 
Three types of error conditions are available on each 
received character. parity error, framing error (no valid 
stop bit) and overrun error. 

PIN DEFINITIONS 
PIN 

NUMBER NAME SYMBOL 
1 POWER SUPPLY vcc 
2 NC NC 
3 GROUND vss 
4 RECEIVER REGISTER RAO 

DISCONNECT 

5-12 RECEIVER HOLDING RRa· 
REGISTER DATA RR1 

13 PARITY ERROR PE 

14 FRAMING ERROR FE 

322 

The transmitter and receiver operate on external 16X 
clocks, where 16 clock times are equal to one bit 
time. The receiver clock is also used to sample in the 
center of the serial data bits to allow for line 
distortion. 
Both transmitter and receiver are double buffered 
allowing a one character time maximum between a 
data read or write. Independent handshake lines for 
receiver and transmitter are also included. All inputs 
and outputs are TTL compatible with three-state 
outputs available on the receiver, and error flags for 
bussing multiple devices. 

FUNCTION 

+ 5 volts supply 
No Internal Connection 
Ground= 0V 
A high level input voltage, V1H, applied to this 
line disconnects the RECEIVER HOLDING 
REGISTER outputs from the RAHi data outputs 
(pins 5-12). 
The parallel contents of the RECEIVER 
HOLDING REGISTER appear on these lines if a 
low-level input voltage, V1L, is applied to RAO. 
For character formats of fewer than eight bits 
received characters are right-justified with RR1 
(pin 12) as the least significant bit and the 
truncated bits are forced to a low level output 
voltage, VOL-
A high level output voltage, VoH, on this line 
indicates that the received parity differ from 
that which is programmed by the EVEN PARITY 
ENABLE control line (pin 39). This output is 
updated each time a character is transferred 
to the RECEIVER HOLDING REGISTER. PE 
lines from a number of arrays can be bussed 
together since an output disconnect capability 
Is provided by Status Flag Disconnect line 
(pin 16). 
A high-level output voltage, VOH, on this line 
indicates that the received character has no 
valid stop bit, i.e., the bit (ii programmed) is not 
a high level voltage. This output is updated each 
time a character is transferred to the Receiver 
Holding Register, FE lines from a number of 
arrays can be bussed together since an output 
disconnect capability is provided by the Status 
Flag Disconnect line (pin 16). 



PIN DEFINITIONS 

PIN 
NUMBER NAME SYMBOL 

15 OVERRUN ERROR OE 

16 

17 

18 

19 

20 

21 

22 

23 

24 

STATUS FLAGS SFD 
DISCONNECT 

RECEIVER REGISTER ARC 
CLOCK 
DATA RECEIVED ORR 
RESET 
DATA RECEIVED DR 

RECEIVER INPUT RI 

MASTER RESET MR 

TRANSMITTER THRE 
HOLDING REGISTER 
EMPTY 

TRANSMITTER THAL 
HOLDING REGISTER 
LOAD 

TRANSMITTER TRE 
REGISTER EMPTY 

323 

FUNCTION 

A high-level output voltage, VOH, on this line 
indicates that the Data Received Flag (pin 19) 
was not reset before the next character was 
transferred to the Receiver Holding Register. 
OE lines from a number of arrays can be bussed 
together since an output disconnect capability 
is provided by the Status Flag Disconnect line 
(pin 16). 

A high-level input voltage, VIH, applied to this 
pin disconnects the PE, FE, OE, DR and THRE 
allowing them to be buss connected. 
The receiver clock frequency is sixteen (16) 
times the desired receiver shift rate. 
A low-level input voltage, VIL, applied to this 
line resets the DR line. 
A high-level output voltage, VOH, indicates that 
an entire character has been received and 
transferred to the RECEIVER HOLDING 
REGISTER. 
Serial input data A high-level input voltage, VIH, 
must be present when data is not being 
received. 
This line is strobed to a high-level input voltage, 
VIH, to clear the logic. It resets the TRANS
MITTER and RECEIVER HOLDING REGIS
TERS, the TRANSMITTER REGISTER, FE, OE, 
PE, DR and sets TAO, THRE, and TRE to a 
high-level output voltage, VoH-
A high-level output voltage, VOH, on this line 
indicates the TRANSMITTER HOLDING REGIS
TER has transferred its contents to the 
TRANSMITTER REGISTER and may be loaded 
with a new character. 
A low-level input voltage, VIL, applied to this 
line enters a character into the TRANSMITTER 
HOLDING REGISTER. A transition from a low• 
level input voltage, VIL, to a high-level input 
voltage, VIH, transfers the character into the 
TRANSMITTER REGISTER if it is not in the 
process of transmitting a character. If a 
character is being transmitted, the transfer is 
delayed until Its transmission is completed. 
Upon completion, the new character is 
automatically transferred simultaneously with 
the initiation of the serial transmission of the 
new character. 
A high-level output voltage, VOH, on this line 
indicates that the TRANSMITTER REGISTER 
has completed serial transmission of a full 
character including STOP bit(s). It remains at 
this level until the start of transmission of the 
next character. 

-I 
:::u .... 
I 
-I 
:::u .... 
ffl • 

0 



) 

., 

PIN DEFINITIONS 

PIN 
NUMBER 

25 

26-33 

34 

35 

36 

37-38 

39 

40 

NAME 

TRANSMITTER 
REGISTER OUTPUT 

TRANSMITTER 
REGISTER DATA 
INPUTS 

SYMBOL 

TRO 

TR1-TRa 

CONTROL REGISTER CRL 
LOAD 

PARITY INHIBIT Pl 

STOP BIT(S) SELECT SBS 

WORD LENGTH 
SELECT 

EVEN PARITY 
ENABLE 

TRANSMITTER 
REGISTER 

EPE 

TRC 

FUNCTION 

The contents of the TRANSMITTER REGISTER 
(START bit, DATA bits, PARITY bit, and STOP 
bits) are serially shifted out on this line. When 
no data is being transmitted, this line will 
remain at a high-level output voltage, VOH- Start 
of transmission is defined as the transition of 
the START bit from a high-level output voltage 
VoH, to a low-level output voltage VOL-
The character to be transmitted is loaded into 
the TRANSMITTER HOLDING REGISTER on 
these lines with the THRL Strobe. If a character 
of less than 8 bits has been selected (by WLS1 
and WLS2), the character is right justified to the 
least significant bit, TR1, and the excess bits 
are disregarded. A high-level input voltage, VIH, 
will cause a high-level output voltage, VoH, to 
be transmitted. 
A high-level input voltage, VIH, on this line 
loads the CONTROL REGISTER with the 
control bits (WLS1, WLS2, EPE, Pl, SBS). This 
line may be strobed or hard wired to a high-level 
input voltage, VIH-
A high-level input voltage, VIH, on this line 
inhibits the parity generation and verification 
circuits and will clamp the PE output (pin 13) to 
VOL- If parity is inhibited, the STOP bit(s) will 
immediately follow the last data bit of trans
mission. 
This line selects the number of STOP bits to be 
transmitted after the parity bit. A high-level 
input voltage VIH, on this line selects two STOP 
bits, and a low-level input voltage, VIL selects a 
single STOP bit. The TR1863 and TR1865 
generate 1 ½ stop bits when word length is 5 
bits and SBS is High VIH. 
These two lines select the character length 
(exclusive of parity) as follows: 

WLS2 WLS1 Word Length 

VIL VIL 5 bits 
VIL VIH 6 bits 
VIH VIL 7 bits 
VIH VIH 8 bits 

This line determines whether even or odd 
PARITY is to be generated by the transmitter 
and checked by the receiver. A high-level input 
voltage, VIH, selects even PARITY and a low
level input voltage, VIL, selects odd PARITY. 
The transmitter clock frequency is sixteen (16) 
times the desired transmitter shift rate . 



CASEI 

CASEII 

LJ 
THRE ----~ 

15 CLOCK TIMES -.i ,.._ ½ CLOCK 
TRE AFTER START OF I 

L-----------LA_s_T_s_T_o_P_a_1_T __ 11_>_::f7_. ~....,,J ________ _ 

TAO 

(1) NOT VALID FOR 5.0 MHZ OPTION 

CR1 CR2 CR3 CR4 CAS 

CF1 CF2 CF3 CF4 CFS 

TAC - - - - ~ 

. - ,__ - ..- -
i,----. 

THAL 

I_ JA 
THAE ( -I D 

.J 
c----

TRE 

~ ~ I -
TRO -I'\ 

( C 

~ 

i,----. 

THAL 

LJ Li) -
THRE 

I -
TRE 

TAO 

DETAIL I 

TRANSMITTER TIMING 

325 

-+I I+- ½CLOCK 

-+- ENO OF LAST STOP 
BIT (COUNT 16) 

CASE I IF THE POSITIVE TRANSITION OF 
THAL OCCURS >250ns PRIOR TO ANY 
CLOCK FALLING EDGE (CF3 IN 
SAMPLE) THE A, 8, C, AND D SIGNALS 
Will BE GENERATED AS SHOWN IN 
DETAIL II 

CASE H IF THE POSITIVE TRANSITION OF 
THAL OCCURS -,;;250ns PRIOR TO ANY 
CLOCK FALLING EDGE {CF3 IN 
SAMPLE). THE B, C, ANO D SIGNALS 
MAY BE GENERATED ON THE FOL
LOWING CLOCK TIME t E THE B. C, 
AND D SIGNALS AS SHOWN lN 
DETAIL MAY CHANGE AS FOLLOWS 

CF3 TO CF4 
CF4 TO CFS 
CA4 TOGAS 

NOTE IT IS ADVISABLE TO CONSIDER 
CASE II FOR !CLOCK > 4 0 MHZ 

• 

0 

-



) 

START (1) STOP START STOP 

-R-,----I~_I:::::::D:AT:A::::::=,~~I ~, ---D-A_T_A---~-----

_R_R_1-_RR_a_A_N_D_ER_R_o_R_F_LA_G_s_P_E_. F_E_._o_E_I5_l ..... __________ _,X._ ___ _ 

DR(19) L 
DRR(18) 

(2) LJ lJ 
DETAIL: 

2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 

ARC 

NOMINAL 

RI STOP BIT 

-(J-...L:.:1,;:J TRANSITION NOMINAL BIT CENTER 

~ 

---/1-------------+-il ,---------
PE, FE(3) 

-4,-.------------~l---------
-!t <5> I ,..:I _________ _ 

RR1-RRB, OE(3) ~ : ---/t-/ ___________ _,_ .... ---------

-ll --i~~i--_l ___ _ -------u- I 
121--j Id G--------

LA~ (4) 

DAR 

-II 
DR(3) 

(1) SEE APPLICATION FLAGS REPORT NO. 1 FOR DESCRIP· 
TION OF START BIT DETECTION 

(2) THE DELAY BETWEEN DAR AND DR = Id = 500 NS 
(3) DR. ERROR FLAGS, AND DATA ARE VALID AT THE 

NOMINAL CENTER OF THE FIRST STOP BIT 
(4) DAR SHOULD BE HIGH A MINIMUM OF "A" NS (ONE

HALF CLOCK TIME PLUS lpd) PRIOR TO THE RISING 
EDGE OF DR 

(5) DATA AND OE PRECEDES DR, PE, AND FE FLAGS BY 
½ CLOCK 

(6) DATA FLAGS WILL REMAIN SET UNTIL A GOOD CHARAC
TER IS RECEIVED OR MASTER RESET IS APPLIED. 

RECEIVER TIMING 

326 



TRB-TR1 

--------

------
-- ------ ~ 

tset ~o ~ lpw 
DATA INPUT LOAD CYCLE 

"OUTPUTS PE, FE, OE, OR, THRE ARE DIS
CONNECTED AT TRANSITION OF SFD 
FROM O.BV TO 2.0V. 

STATUS FLAG OUTPUT DELAYS 

2.0V 

O.BV 

thold 

327 

WLS1, WLS2, SBS, P1, EPE 
r-- ----, 
,I<-------➔ 2.0V 

~--
------

CRLSTROBE 

lpwd~ tset 1hold 
le 

CONTROL REGISTER LOAD CYCLE 

RRO 

"RR1-RR8 

"RR1-RA3, ARE DISCONNECTED AT 
TRANSITION OF ARD FROM O.BV TO 2.0V. 

DATA OUTPUT DELAYS 

-4 :a ... 
I 
~ • :a ... 
I en 

0 



NO 

NO 

A 

1 TUAN ON POWER 

2. PULSE MASTER 
RESET 

3. SELECT BAUD 
RATE 16XCLK 

4. SET CONTROL BITS 

LOAD START BIT INTO 
RECEJVEA SHIFT REGISTER 

SHIFT ANO LOAD DATA BIT 
INTO RECEIVER SHIFT REGISTER 

B 

YES 

C 

A B 

TRANSFER DATA BITS FROM 
RECEIVER REGISTER TO 

RECEIVER HOLDING REGISTER 
ANO SET OE TO 
PAOPEA STATE 

SET OR. PE & FE FLAGS TO PAOPEA STATES 

OPERATOR> 
ACTION 

OR= VoH 

EXAMINE OUTPUTS 
1. STROBE SFO 
2. STROBE RAD ..._ ____ __, 

RESET OR 

ORR "' Vol 
DR-vol 

RECEIVER FLOW CHART 

329 

0 



NO 

NO 

A 

1 TUAN ON POWER 

2. PULSE MASTER 
RESET 

3. SELECT BAUD 
RATE 16XCLK 

4. SET CONTROL BITS 

LOAD START BIT INTO 
RECEJVEA SHIFT REGISTER 

SHIFT ANO LOAD DATA BIT 
INTO RECEIVER SHIFT REGISTER 

B 

YES 

C 

A B 

TRANSFER DATA BITS FROM 
RECEIVER REGISTER TO 

RECEIVER HOLDING REGISTER 
ANO SET OE TO 
PAOPEA STATE 

SET OR. PE & FE FLAGS TO PAOPEA STATES 

OPERATOR> 
ACTION 

OR= VoH 

EXAMINE OUTPUTS 
1. STROBE SFO 
2. STROBE RAD ..._ ____ __, 

RESET OR 

ORR "' Vol 
DR-vol 

RECEIVER FLOW CHART 

329 

0 



\ ., 

ABSOLUTE MAXIMUM RATINGS 

NOTE: These voltages are measured with respect to GND 

Storage Temperature 
Plastic . . . . . . . . . . . . . . . . . . . - 55•c to + 125•c 
Ceramic. . . . . . . . . . . . . . . . . . -65"C to + 150"C 

Vee Supply Voltage ............. - 0.3V to + 7.0V 
Input Voltage at any pin .......... - 0.3V to + 7.0V 
Operating Free-Air Temperature 

TA Range ....................... o•c to 1o•c 
Lead Temperature (Soldering, 10 sec.) ....... 300"C 

ELECTRICAL CHARACTERISTICS 
(Vee = 5V ± 5%, vss = OV) 

SYMBOL PARAMETER TR1863/5 
OPERATING CURRENT MIN MAX 

ICC Supply Current 35ma 
LOGIC LEVELS 

VIH Logic High 2.4V 
VIL Logic Low 0.6V 

OUTPUT LOGIC LEVELS 
VOH Logic High 2.4V 
VOL Logic low 0.4V 
IOC Output Leakage ±10,,a 

(High Impedance State) 
ill Low Level Input Current 100µa 1.6ma 

10,,a 
IIH High Level Input Current -10,,a 

330 

CONDITIONS 
vcc = s.2sv 

vcc = 4.75V 

Vee = 4.75V, IOH = 100µa 
Vee = 5.25V, IOL = 1.6 ma 
VOUT = ov, VouT = 5V 
SFD = RRD = V1H 
VIN = 0.4V TR 1865 only 
VIN = VIL, TR 1863 only 
VIN = ViH, TR 1863 only 



SWITCHING CHARACTERISTICS 

(See "Switching Waveforms') 

SYMBOL PARAMETER 

fclock Clock Frequency 

TR1863-00 

TR1863-02 

TR1863-04 

TR1863-06 

TR1865-00 

TR1865-02 

TR1865-04 

TR186f>-06 

tpw Pulse Widths 

CAL 

THAL 

DAR 
MR 

le Coincidence Time 

thold Hold Time 

tset Set Time 

OUTPUT PROPAGATION 

DELAYS 

tpdO To Low State 

tpd1 To High State 

CAPACITANCE 

Cjn Inputs 

Co Outputs 

MIN MAX CONDITIONS 

vcc = 4.75V 

DC 1.0 MHz 

DC 2.5MHz 

DC 3.5MHz 

DC 5.0MHz 

DC 1.0 MHz with internal pull-ups on all inputs 

DC 2.5MHz with internal pull-ups on all inputs 

DC 3.5MHz with internal pull-ups on all inputs 

DC 5.0MHz with internal pull-ups on all inputs 

200ns 

200ns 

200ns 

500ns 

200ns 

20ns 

0 

250ns 

250ns CL = 20 pf, plus one TTL load 

20 pf f = 1 MHz, VIN = 5V 

20pf f = 1 MHz, V1N = 5V 

See page 725 for ordering information. 

331 

-t :x, .... 
! --t 
:x, .... 
m • 

0 



) 

-I 
::D .... 
~ 
c:.:> --I 
::D .... 
~ 
U't 

lnlormalton furnished t,y Western 0191tal Corporatton ,s beheved to be accurate and rehable However, no respons1b1hty 1s assumed by Western Digital 
Corporahon tor its use. nor lor any infringements ol pa1en1s or other nghls of third parties which may result from ,1s use No license 1s granted by 
1mphcat1on or otherw,se under any patent or patent r1ghls ol Western 0191tal Corporation Western D1g1tal Corporation reserves lhe right to change 
spec1f1cahons al any11me without not,ce 

332 Pronted ,n US A 



0 



• 

• 

Part 2 / Software 

1/ Disk Organization .............•...........•..........................••.............. 
Single Density Floppy Diskette ...•..•...................................•....... 
Double Density Floppy Diskette ...••.•.•........................................ 
5" 5-Meg Hard Disk. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • • 2 
Disk Space Available to the User . . . . . . . . . . . . . . . . . . • . . . . . • . . . . • . . . . . . . . . . . . . . . . . . . 2 
Unit of Allocation. . . . . . . . . . . . . . . . . . • . . . . . . . • • • • • . . . . • • . . . . . . . . . . . . . . . . • . . . • . 2 

2/ Disk Files. . . . . . . . . . . . . . • . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . . . . . . . • . . . . • . . • . • • . • . . . . . . . . . 3 
Methods of File Allocation . . . . . . . . . . . . . . . . . . . . . • . • . . . . . . • . • • . • • • . • • • • • • • . . • . • . . 3 

Dynamic Allocation. . . . . . . . . . . . • . . . . . . . . . . . . . . . . . . • . . . . . . . • . . . . . . . . . . . . . . 3 
Pre-Allocation. . . . . . . . . . . . . . . . . . . . . . . • • . . . . . . . . . . . . . . . . • . . . . . . . . . • . . . . . . 3 

Record Length . . . . . . . . . . . . • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . . . . . . 3 
Record Processing Capabilities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 

Record Numbers. . • . • . . . • . • . • . . • . . . . . . . . • . . . . . . . . • . . • • • • . • • • • . . . . . . . . . . . 4 

3/ TRSDOS File Descriptions • . • . . . . . • . . • . . • . • • . . . • . . . . . . . • . • . . . • . . . . . . . • • . . . • . • • . . . • . • . • . . 5 
System Files (/SYS). • . . . . . . . . . . . . . . . . . . . . . . . . . • . . . . • . . . . • . . . . . . . . . . . . . . . . . . . . 5 
Utility Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . • • . . . . . . . . . . . . . . . . . . . . . . . . . . . • • . . 7 
Device Driver Programs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 
Filter Programs . . . . . . . . . . . . . . . . • . . . . . . . . . . . . . . . . . . • . . . . . . . . . . . • . • . . . . . . . . . . . 7 
Creating a Minimum Configuration Disk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 

4/ Device Access. . • . . . . . . • • • . • . . . . . . . . . • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . . . . . . . • . • . . 9 
Device Control Block (DCB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . • . . • • • • . • • . . . . • . • • • 9 
Memory Header .••...•....•.......•..•..••..•.•..•....•...•..••.•.•..•....• 10 

5/ Drive Access ......•.....•........................................................... 11 
Drive Code Table (OCT) ...............................•..........•...........• 11 
Disk 1/0 Table ••....•.....•....••.........•..••................•....•.•.... 13 
Directory Records ......•..............•................•.................... 13 
Granule Allocation Table (GAT) ...............•........•.•.••.........•......... 16 
Hash Index Table (HIT) .•..•..................................•........•.•.••. 18 

6/ File Control ....................................•..........•........................ 23 
File Control Block (FCB) ...................................................... 23 

7 I TRSDOS Version 6 Programming Guidelines .............•..•.....................••.......... 27 
Converting to TRSDOS Version 6 ........................•..............•...•..... 27 
Programming With Restart Vectors ......•.....•.........•.....•...........•....... 29 
KFLAG$ (BREAK)( (PAUSE), and (ENTER) Interfacing .....•............•..•..•....••.• 29 
Interfacing to @ICNFG .•........•................••..•••..•..••••.........•..• 32 
Interfacing to @KITSK ....•..••....•..................•.•...•.......•......... 33 
Interfacing to the Task Processor ................................................. 34 
Interfacing RAM Banks 1 and 2 ................................................•• 36 
Device Driver and FIiter Templates ..........................................•....• 40 
@CTL Interfacing to Device Drivers ...........................................•... 42 

• 



8/ Using the Supervisor Calls. . . . . • . . . . . . . . . . . . . . . . . . • . . . • . . . . . . • . . . . . . . • . . • . . . . . . . . . • • . . . . . 45 
Calling Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . . . . . . . . • . . . . . . • . . . . . . 45 
Program Entry and Return Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 
Supervisor Calls. . . . . . . . . . . . . . • . . . . . . . . . . . . . • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 
Numerical List of SVCs . . . • . . . . . . . . . . . . . . . . . . . . • . . . . . . . . . . . . . . . . . . . . . . . . . . . . • • 49 
Alphabetical List of SVCs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . . . • . . . . . . . . • . . • . . . . . 52 
Sample Programs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 

9/ Technical Information on TRSDOS Commands and Utilities ......•...............•................. 189 

Appendix A/ 
Appendix B/ 
Appendix C/ 
Appendix D/ 
Appendix E/ 
Appendix F/ 

TRSDOS Error Messages ..........•....•...................••....•............. 193 
Memory Map ..••...•...•..•..•..•.....•..•.......•.•..•........•....•..... 199 
Character Codes . . . . • . . • • . . • . . • . • • . . . . . . . . . . . • . . . . . . • . • . . • . . . . . . . . . • . . • . • . . . 201 
Keyboard Code Map .••....•..•.••...•................•.............•........ 211 
Programmable SVCs ......................................................... 213 
Using SYS 13/SYS .......................................................... 215 

Index .......................................•....................................... 217 

• 



• 

~ 

• 

1 /Disk Organization 

TRSDOS Version 6 can be used with 5¼" single-sided floppy diskettes and 
with hard disk. Floppy diskettes can be either single-or double-density. See the 
charts below for the number of sectors per track, number of cylinders, and so 
on for each type of disk. (Sectors and cylinders are numbered starting with 0.) 

Single-Density Roppy Diskette 

Bytes Sectors Sectors Granules Tracks Cylinders 
per per per per per per Total 

Sector Granule Track* Track Cylinder Drive Bytes 

256 256 
5 ·---·------·------ 1,280 

(10) 2 2,560 
1 2,560 

40 102,400 
256 5 (10) 2 1 40 102,400 

(100K)** 

Double-Density Floppy Diskette 

Bytes Sectors Sectors Granules Tracks Cylinders 
per per per per per per Total 

Sector Granule Track* Track Cylinder Drive Bytes 

256 -------·---·-------- 256 
6 ---···-- 1,536 

(18) 3 4,608 
1 4,608 

40 184,320 
256 6 (18) 3 1 40 184,320 

(180K)** 

*The number of sectors per track is not included in the calculation because it 
is equal to the number of sectors per granule times the number of granules 
per track. (5 x 2= 10 for single density, 6x 3= 18 for double density, and 
16 x 2 = 32 for hard disk.) 

**Note that this figure is the total amount of space in the given fonnat. Keep in 
mind that an entire cylinder is used for the directory and at least one granule 
is used for the bootstrap code. This leaves 96.25K available for use on a 
single-density data disk and 174K on a double-density data disk . 

Software 1 



5'' 5-Meg Hard Disk 

Note: Because of continual advancements in hard disk technology, the number 
of tracks and the number of tracks per cylinder may change. Therfore, any infor
mation that comes with your hard disk drive(s) supersedes the information in 
the table below. 

Bytes Sectors 
per per 

Sector Granule 

256 
16 

256 16 

Sectors 
per 

Track* 

Granules 
per 

Track 

----------
(32) 2 

(32) 2 

Tracks 
per 

Cylinder 

Cylinders 
per 

Drive 

····-------·------------
4 

153 
4 153 

Total 
Bytes 

256 
4,096 
8,192 

32,768 
5,013,504 
5,013,504 

(4,8961<) 

*The number of sectors per track is not included in the calculation because it is 
equal to the number of sectors per granule times the number of granules per 
track. (5 x 2 = 10 for single density, 6 x 3 = 18 for double density, and 
16 x 2 = 32 for hard disk.) 

Disk Space Available to the User 

unn of Allocation 

One granule on cylinder 0 of each disk is reserved for the system. It contains 
information about where the directory is located on that disk. If the disk contains 
an operating system, then all of cylinder 0 is reserved. This area contains infor
mation used to load TRSDOS when you press the reset button. 

One complete cylinder is reserved for the directory, the granule allocation table 
(GAT), and the hash index table (HIT). (On single-sided diskettes, one cylinder 
is the same as one track.) The number of this cylinder varies, depending on the 
size and type of disk. Also, If any portion of the cylinder normally used for the 
directory is flawed, TRSDOS uses another cylinder for the directory. You can 
find out where the FORMAT utility has placed the directory by using the 
Free :drive command. 

On hard disks, an additional cylinder (cylinder 1) is reserved for use in case 
your disk drive requires service. This provides an area for the technician to write 
on the disk without harming any data. (H you bring your hard disk in for service, 
you should try to back up the contents of the disk first, just to be safe.) 

The smallest unit of disk space that the system can allocate to a file is a gran
ule. A granule is made up of a set of sectors that are adjacent to one another 
on the disk. The number of sectors in a granule depends on the type and size 
of the disk. See the charts on the previous two pages for some typical sizes . 

Software 2 

• 



• 

• 

2/Disk Files 

Methods of File Allocation 

Record Length 

TRSDOS provides two ways to allocate disk space for files: dynamic allocation 
and pre-allocation. 

Dynamic Allocation 
With dynamic allocation, TRSDOS allocates granules only at the time of write. 
For example,'when a file is first opened for output, no space is allocated. The 
first allocation of space is done at the first write. Additional space is added as 
required by further writes. 

With dynamically allocated files, unused granules are de-allocated (recovered) 
when the file is closed. 

Unless you execute the CREATE system command, TRSDOS uses dynamic 
allocation. 

Pre-Allocation 
With pre-allocation, the file is allocated a specified number of granules when it 
is created. Pre-allocated files can be created only by the system command 
CREATE. (See the Disk System Owner's Manual for more information on 
CREATE.) 

TRSDOS automatically extends a pre-allocated file as needed. However, it 
does not de-allocate unused granules when a pre-allocated file is closed. To 
reduce the size of a pre-allocated file, you must copy it to a dynamically allo
cated file. The COPY (CLONE= N) system command does this automatically. 

Files that have been pre-allocated have a 'C' by their names in a directory 
listing. 

TRSDOS transfers data to and from disks one sector at a time. These sectors 
are 256-byte blocks, and are also called the system's "physical'' records. 

You deal with records that are 256 bytes in length or smaller, depending on 
what size record you want to work with. These are known as "logical" records. 

You set the size of the logical records in a file when you open the file for the first 
time. The size is the number of bytes to be kept in each record. There may be 
from 1 to 256 bytes per logical record. 

The operating system automatically accumulates your logical records and 
stores them in physical records. Since physical records are always 256 bytes in 
length, there may be one or more logical records stored in each physical record. 
When the records are read back from disk, the system automatically returns 
one logical record at a time. These actions are known as "blocking" and "de
blocking:• or "spanning:• 

For example, if the logical record length is 200, sectors 1 and 2 look like this: 

Software3 



Since they are completely handled by the operating system, you do not need to 
concern yourself with physical records, sectors, granules, tracks, and so on. 
This is to your benefit, as the number of sectors per granule varies from disk to 
disk. Also, physical record lengths may change in future versions of TRSDOS, 
but the concept of logical records will not. 

Note: All files are fixed-length record files with TRSDOS Version 6. 

Record Processing Capabilities 

TRSDOS allows both direct and sequential file access. 

Direct access (sometimes called "random access") lets you process records in 
any sequence you specify. 

Sequential access allows you to process records in sequence: record n, n + 1, 
n + 2, and so on. With sequential access, you do not specify a record number. 
Instead, TRSDOS accesses the record that follows the last record processed, 
starting with record 0. 

With sequential access files, use the @READ supervisor call to read the next 
record, and the @WRITE or @VER supervisor call to write the next record . 
(When the file is first opened, processing starts at record 0. You can use 
@PEOF to position to the end of file.) 

To read or ,write to a direct access file, use the @POSN supervisor call to posi
tion to a specified record. Then use @READ, @WRITE, or @VER as desired. 
Once @POSN has been used, the End of File (EOF) marker will not move, 
unless the file is extended by writing past the current EOF position. 

Record Numbers 
Using direct (random) access, you can access up to 65,536 records. Record 
numbers start at 0 and go to 65535. 

Using a file sequentially, you can access up to 16,n7,216 bytes. To calculate 
the number of records you can access sequentially, use the formula: 

16,777,216 + logical record length= number of sequential 
records allowed 

Below are some examples. 

If the LRL=256, then: 
16,777,216 + 256=65,536 records 

If the LRL = 128, then: 
16,777,216 + 128= 131,072 records 

If the LRL = 50, then: 
16,777,216 + 50=335,544 records 

If the LRL = 1, then: 
16,777,216 + 1 = 16,777,216 records 

Software 4 

• 

• 



• 

• 

3/TRSDOS File Descriptions 

This section describes four types of files found on your TRSDOS master disk
ette (system files, utilities, driver programs, and filter programs) and explains 
their functions. It also describes how to construct a minimum system disk for 
running applications packages. 

System Files (/SYS) 

TRSDOS Version 6 would occupy considerable memory space if all of it were 
resident in memory at any one time. To minimize the amount of memory 
reserved for system use, TRSDOS uses overlays. 

Using an overlay-driven system involves some compromise. While a user's 
application is in progress, different overlays may need to be loaded to perform 
certain activities requested of the system. This could cause the system to run 
slightly slower than a system which has more of its file access routines always 
resident in memory. 

The use of overlay$ also requires that a SYSTEM disk usually be available in 
Drive 0 (the system drive). Since the disk containing the operating system and 
its utilities leaves little space available to the user, you may want to remove cer
tain parts of the system software not needed while a particular application is 
running. You may in fact discover that your day-to-day operations need only a 
minimal TRSDOS configuration. The greater the number of system functions 
unnecessary for your application, the more space you can have available for a 
"working" system disk. Use the PURGE or REMOVE library command to elim
inate unneeded system files from the disk. 

The following paragraphs describe the functions performed by each system 
overlay. (In the display produced by the DIR (SYS) library command, the system 
overlays are identified by the file extension /SYS.) 

Note: Two system files are put on the disk during formatting. They are DIR/SYS 
and BOOT/SYS. These files should never be copied from one disk to another 
or REMOVEd. TRSDOS automatically updates any information necessary 
when performing a backup. 

SYS8/SYS 

This is not an overlay. It contains the resident part of the operating system 
(SYSRES). It is also needed to dynamically allocate file space used when writ
ing files. Any disk used for booting the system must contain SYS0. It can be 
purged from disks not used for booting. 

SYS1/SYS 

This overlay contains the TRSDOS command interpreter and the routines for 
processing the @CMNDI, @CMNDR, @FEXT, @FSPEC, and @PARAM sys
tem vectors. This overlay must be available on all SYSTEM disks. 

SYS2/SYS 

This overlay is used for opening or initializing disk files and logical devices. It 
also contains routines for processing the @CKDRV, @GTDCB, and @RENAM 
system vectors, and routines for hashing file specifications and passwords. 
This overlay must be available on all SYSTEM disks. 

SYS3/SYS 

This overlay contains all of the system routines needed to close files and logical 
devices. It also contains the routines needed to service the @FNAME system 
vector. This overlay must not be removed from the disk. 

Software 5 



SYS4/SYS 

This overlay contains the system error dictionary. It is needed to issue such 
messages as "File not found;' "Directory read error;• etc. If you decide to 
remove this overlay from your working SYSTEM disk, all system errors will pro
duce the error message "SYS ERROW' It is recommended that you not remove 
this overlay, especially since it occupies only one granule of space. 

SYSS/SYS 

This is the "ghost" debugger. It is needed if you intend to test out machine lan
guage application software by using the TRSDOS DEBUG library command. If 
your operation will not require this debugging tool, you may purge this overlay. 

SYS6/SYS 

This overlay contains all of the routines necessary to service the library com
mands identified as "Library /1/' by the LIB command. This represents the pri
mary library functions. Only very limited use can be made of TRSDOS if this 
overlay is removed from your working SYSTEM disk. 

SYS7/SYS 

This overlay contains all of the routines necessary to service the library com
mands identified as "Library B" by the LIB command. A great deal of use can 
be made of TRSDOS even without this overlay. It performs specialized func
tions that may not be needed in the operation of specific applications. You can 
purge this overlay if you decide it is not needed on a working SYSTEM disk. 

SYS8/SYS 

This overlay contains all of the routines necessary to service the library com
mands identified as "Library C" by the LIB command. A great deal of use can 
be made of TRSDOS even without this overlay. It performs specialized func
tions that may not be needed in the operation of specific applications. You can 
purge this overlay if you decide it is not needed on a working SYSTEM disk. 

SYS9/SYS 

This overlay contains the routines necessary to service the extended DEBUG 
commands available after a DEBUG (EXT) is performed. This overlay may be 
purged if you will not need the extended DEBUG commands while running your 
application. If you remove SYS5/SYS, then you may as well remove SYS9/SYS, 
as it would serve no useful purpose. 

SYS18/SYS 

This system overlay contains the procedures necessary to service the request 
to remove a file. It should remain on your working SYSTEM disks. 

SYS11/SYS 

This overlay contains all of the procedures necessary to perform the Job Con
trol Language execution phase. You may remove this overlay from your working 
disks if you do not intend to execute any JCL functions. If SYS6/SYS (which 
contains the DO command) has been removed, keeping this overlay would 
serve no purpose. 

SYS12/SYS 

This system overlay contains the routines that service the @DODIR, 
@GTMOD, and @RAMDIR system vectors. It should remain on your disks. 

SYS13/SYS 

This overlay is reserved for future system use. It contains no code and takes up 
no space on the disk. You may remove this overlay if you wish to free up its 
directory slot. 

Software 6 

• 

• 



• SYS2 must be on the system disk if a configuration file is to be loaded. 

• SYS11 must be present only if any JCL files will be used. 

• All three libraries (SYS files 6, 7, and 8) may be purged if no library com
mand will be used. 

• SYS5 and SYS9 may be purged if the system DEBUG package is not 
needed. 

• SYS0 may be removed from any disk not used for booting. 

• SYS11 (the JCL processor) and SYS6 (containing the DO library com
mand) must both be on the disk if the DO command is to be used. Also, 
if you remove SYS6, you may as well remove SYS11. 

• SYS13 may be removed if you have not implemented an ECI, an IEP file, 
or if you do not intend to use them. 

The presence of any utility, driver, or filter program is dependent upon your in
dividual needs. You can save most of the TRSDOS features in a configuration 
file using the SYSTEM (SYSGEN) command, so the driver and filter programs 
will not be needed in run time applications. If you intend to use the HELP utility, 
your disk must contain the DOS/HLP file. 

The owner (update) passwords for TRSDOS files are as follows: 

File Type Extension Owner Password 

System files 
Filter files 
Driver files 
Utility files 
BASIC 
BASIC overlays 
CON FIG/SYS 
Drive Code Table 

Initializer 

Softwares 

(/SYS) 
(/FLT) 
(/DVR) 
(/CMD) 

(/OV$) 

(/OCT) 

LSIDOS 
FILTER 
DRIVER 
UTILITY 
BASIC 
BASIC 
CCC 
UTILITY 

• 



• 

• 

4/Device Access 

Device Control Block (DCB) 

The Device Control Block (DCB) is an area of memory that contains informa
tion used to interface the operating system with various logical devices. These 
devices include the keyboard (*Kl), the video display (*DO), a printer (*PR), a 
communications line (*CL), and other devices that you may define. 

The following information describes each assigned DCB byte. 

DCB+9 (TYPE Byte) 

Bit 7-lf set to "1;' the Device Control Block is actually a File Control Block 
(FCB) with the file open. Since DCBs and FCBs are similar, and 
devices may be routed to files, a "device" with this bit set indicates 
a routing to a file. 

Bit 6-lf set to "1;· the device defined by the DCB is filtered or is a device 
filter. 

Bit 5-lf set to "1;' the device defined by the DCB is linked. 

Bit 4-lf set to "1;' the device defined by the DCB is routed. 

Bit 3-lf set to "1;· the device defined by the DCB is a NIL device. Any out
put directed to the device is discarded. For any input request, the 
character returned is a null (ASCII value 0). 

Bit 2-lf set to "1;· the device defined by the DCB can handle requests 
generated by the @CTL supervisor call. See the section on Super
visor Calls for more information. 

Bit 1 - If set to "1;' the device defined by the DCB can handle output 
requests which normally come from the @PUT supervisor call. 

Bit 0-lf set to "1;' the device defined by the DCB can handle requests for 
input which normally come from the @GET supervisor call. 

DCB+1 and DCB+2 

Contain the address of the driver routine that supports the hardware assigned 
to this DCB. (In the case of a routed or linked device, the vector may point to 
another DCB.) 

DCB+3 through DCB+5 

Reserved for system use. 

DCB+& and DCB+7 

These locations normally contain the two alphabetic characters of the devspec. 
The system uses the devspec as a reference in searching the device control 
block tables . 

Software 9 



Memory Header 

Modules that TRSDOS loads into memory (filters, drivers, and other memory 
modules such as a SPOOL buffer or the extended DEBUG code) are identified 
by a standard front-end header: 

BEGIN: JR START iGo to actual 
ibefinninf 
!Contains the 

code 

DEFW END-1 

DEF6 10 

hifhest bvte 
;of MIMOrY 
iused by the Module 
ilenfth of naMe, 1-15 
;characters; 
ibits 4-7 reserved for 
;system use 

DEFM 'NAMESTRING' iUP to 15 alPhanuMeric 
!characters, with the first 
!character A-Z, This should 
ibe a unique naMe to 
lPOSitivel, identify the 
;module. 

MODOC6: DEFW $-$ lDC6 Pointinf to this 
!Module (if applicable) 
;spare sYsteM Pointer_ 
I RESERVED 

DEFW 0 

I 
; An• additional data stora9e foes here 
; 
START: Start of actual pro9raM code 

END: EQU $ 

As explained under the @GTMOD SVC in the "Supervisor Call" section, the 
location of a specific header can be found provided all modules that are put into 
memory use this header structure. You can locate the data area for a module 
by using @GTMOD to find the start of the header and then indexing in to the 
data area. 

Software 10 

Q 

• 



• 

• 

5/Drive Access 

Drive Code Table (OCT) 

TRSDOS uses a Drive Code Table (OCT) to interface the operating system with 
specific disk driver routines. Note especially the fields that specify the allocation 
scheme for a given drive. This data is essential in the allocation and accessi
bility of file records. 

The OCT contains eight 10-byte positions - one for each logical drive des
ignated 0-7. TRSDOS supports a standard configuration of two-floppy 
drives. You may have up to four floppy drives. This is the default initializa
tion when TRSDOS is loaded. 

Here is the Drive Code Table layout: 

DCT+8 

This is the first byte of a 3-byte vector to the disk 1/0 driver routines. This byte 
Is normally X'C3: If the drive is disabled or has not been configured (see the 
SYSTEM command in the Disk System Owners Manual), this byte is a RET 
instruction (X'C9'). 

DCT+1 and DCT+2 

Contain the entry address of the routines that drive the physical hardware. 

DCT+3 

Contains a series of flags for drive specifications. 

Bit 7 -Set to "1" if the drive is software write protected, "0" if it is not. (See 
the SYSTEM command in the Disk System Owners Manual.) 

Bit 6-Set to "1" for ODEN (double density), or "0" for SDEN (single 
density). 

Bit 5-Set to "1" if the drive is an 8" drive. Set to "0" if it is a 5¼" drive. 

Bit 4-A "1" causes the selection of the disk's second side. The first side 
is selected if this bit is "0'.' This bit value matches the side indicator 
bit in the sector header written by the Floppy Disk Controller 
(FDC). 

Bit 3-A "1" indicates a hard drive (Winchester). A "0" denotes a floppy 
drive (5¼" or 8"). 

Bit 2- Indicates the time delay between selection of a 5¼" drive and the 
first poll of the status register. A "1" value indicates 0.5 second and 
a "0" indicates 1.0 second. See the SYSTEM command in the Disk 
System Owners Manual for more details. 

If the drive is a hard drive, this bit indicates either a fixed or remov
able disk: "1" = fixed, "0" = removable. 

Bits 1 and 0-Contain the step rate specification for the Floppy Disk Con
troller. (See the SYSTEM command in the Disk System Owners 
Manual.) In the case of a hard drive, this field may indicate the drive 
address (0-3). 

DCT+4 

Contains additional drive specifications. 

Bit 7 - (Version 6.2 only) If "1 ", no @CKDRV is done when accessing the 
drive. If an application opens several files on a drive, this bit can be 
set to speed 1/0 on that drive after the first successful open is 
performed. 

Software 11 



• 

In versions prior to TRSDOS 6.2, this bit is reserved for future use. 
In order to maintain compatibility with future releases of TRSDOS, 
do not use this bit. 

Bit 6 - If "1 ", the controller is capable of double-density mode. 

Bit 5- "1" indicates that this is a 2-sided floppy diskette; "0" indicates a 
1-sided floppy disk. Do not confuse this bit with Bit 4 of OCT+ 3. 
This bit shows if the disk is double-sided; Bit 4 of OCT + 3 tells the 
controller what side the current 1/0 is to be on. 

If the hard drive bit (OCT+ 3, Bit 3) is set, a "1" denotes double the 
cylinder count stored in OCT+ 6. (This implies that a logical cylin
der is made up of two physical cylinders.) 

Bit 4-11 "1;' indicates an alien (non-standard) disk controller. 

Bits 0-3-Contain the physical drive address by bit selection (0001, 0010, 
0100, and 1000 equal logical Drives 0, 1, 2, and 3, respectively, in 
a default system). The system supports a translation only where no 
more than one bit can be set. 

DCT+5 

If the alien bit (Bit 4) is set, these bits may indicate the starting head 
number. 

Contains the current cyllnder position of the drive. It normally stores a copy of 
the Floppy Disk Controller's track register contents whenever the FDC is 
selected for access to this drive. It can then be used to reload the track register 
whenever the FOC is reselected. 

If the alien bit (OCT +4, Bit 4) is set, OCT +5 may contain the drive select code 
for the alien controller. 

DCT+6 

Contains the highest numbered cylinder on the drive. Since cylinders are num
bered from zero, a 35-track drive is recorded as X'2Z a 40-track drive as X'27,' 
and an 80-track drive as X'4F.' If the hard drive bit (OCT+ 3, Bit 3) is set, the true 
cylinder count depends on OCT+ 4, Bit 5. If that bit is a "1;' OCT+ 6 contains 
only half of the true cylinder count. 

DCT+7 

Contains allocation information. 

Bits 5-7 - Contain the number of heads for a hard drive. 

Bits 0-4-Contain the highest numbered sector relative to zero. A 10-
sector-per-track drive would show X'09.' If OCT+ 4, Bit 5 indicates 
2-sided operation, the sectors per cylinder equals twice this 
number. 

DCT+8 

Contains additional allocation information. 

Bits 5-7 -Contain the number of granules per track allocated in the for
matting process. If OCT+ 4, Bit 5 indicates 2-sided operation, the 
granules per cylinder equals twice this number. For a hard drive, 
this number is the total granules per cylinder. 

Bits 0-4-Contain the number of sectors per granule that was used in the 
formatting operation. 

DCT+9 

Contains the number of the cylinder where the directory is located. For any 
directory access, the system first attempts to use this value to read the direc
tory. If this operation is unsuccessful, the system examines the BOOT granule 
(cylinder 0) directory address byte. 

Software 12 

• 



• 

Disk 1/0 Table 

Bytes DCT + 6, DCT + 7, and DCT + 8 must relate without conflicts. That is, the 
highest numbered sector ( + 1) divided by the number of sectors per granule 
( + 1) must equal the number of granules per track ( + 1 ). 

TRSDOS interfaces with hardware peripherals by means of software drivers. 
The drivers are, in general, coupled to the operating system through data 
parameters stored in the system's many tables. In this way, hardware not cur
rently supported by TRSDOS can easily be supported by generating driver soft
ware and updating the system tables. 

Disk drive sub-systems (such as controllers for 5¼" drives, 8" drives, and hard 
disk drives) have many parameters addressed in the Drive Code Table (DCT). 
Besides those operating parameters, controllers also require various com
mands (SELECT, SECTOR READ, SECTOR WRITE, and so on) to control the 
physical devices. TRSDOS has defined command conventions to deal with 
most commands available on standard Disk Controllers. 

The function value (hexadecimal or decimal) you wish to pass to the driver 
should go in register B. The available functions are: 

Hex Dec Function oeeration Performed 

X'00' 0 DCSTAT Test to see if drive is assigned in DCT 

X'01' 1 SELECT Select a new drive and return status 

X'02' 2 DCINIT Set to cylinder 0, restore, set side 0 

X'03' 3 DCRES Reset the Floppy Disk Controller 

X'04' 4 ASTOR Issue FDC RESTORE command 

X'05' 5 STEP! Issue FDC STEP IN command 

X'06' 6 SEEK Seek a cylinder 

X'07' 7 TSTBSY Test to see if requested drive is busy 

X'08' 8 RDHDR Read sector header Information 

X'09' 9 RDSEC Read sector 

X'0A' 10 VRSEC Verify if the sector is readable 

X'0B' 11 RDTRK Issue an FDC track read command 

X'0C' 12 HDFMT Format the device 

X'0D' 13 WRSEC Write a sector 

X'0E' 14 WRSYS Write a system sector (for example, directory) 

X'0F' 15 WRTRK Issue an FDC track write command 

Function codes X'10' to X'FF' are reserved for future use. 

Directory Records (DIREC) 
The directory contains information needed to access all files on the disk. The 
directory records section is limited to a maximum of 32 sectors because of 
physical limitations in the Hash Index Table. Two additional sectors in the direc
tory cylinder are used by the system for the Granule Allocation Table and the 
Hash Index Table. The directory is contained on one cylinder. Thus, a 10-sector
per-cylinder formatted disk has, at most, eight directory sectors. See the sec-

Software 13 



tion on the Hash Index Table for the formula to calculate the number of directory 
sectors. 

A directory record is 32 bytes in length. Each directory sector contains eight 
directory records (256/32 = 8). On system disks, the first two directory records 
of the first eight directory sectors are reserved for system overlays. The total 
number of files possible on a disk equals the number of directory sectors times 
eight (since 256/32 = 8). The number available for use is reduced by 16 on sys
tem disks to account for those record slots reserved for the operating system. 
The following table shows the directory record capacity (file capacity) of each 
format type. The dash suffix (-1 or -2) on the items in the density column rep
resents the number of sides formatted (for example, SDEN-1 means single 
density, 1-sided). 

Sectors User Files User 
per Directory on Data Files on 

Cylinder Sectors Disk** SYS Disk 

5" SDEN-1 10 8 62 48 
5"SDEN•2 20 18 142 128 
5" DDEN-1 18 16 126 112 
5"DDEN-2 36 32 254 240 
8" SDEN-1 16 14 110 96 
8"SDEN-2 32 30 238 224 
8"DDEN-1 30 28 222 208 
8" DDEN-2 60 32 254 240 
Hard Disk* 

*Hard drive format depends on the drive size and type, as well as the user's 
division of the physical drive into logical drives. After setting up and format
ting the drive, you can use the FREE library command to see the available 
files . 

.. Note: Two directory records are reserved for BOOT/SYS and DIR/SYS, 
and are included in the figures for this column. 

TRSDOS Version 6 is upward compatible with other TRSDOS 2.3 compatible 
operating systems in its directory format. The data contained in the directory 
has been extended. An SVC is included to either display an abbreviated direc
tory or place its data in a user-defined buffer area. For detailed information, see 
the @DODIR and @RAMDIR SVCs. 

The following information describes the contents of each directory field: 

DIR+8 

Contains all attributes of the designated file. 

Bit 7 - If "0;' this flag indicates that the directory record is the file's primary 
directory entry (FPDE). If "1;' the directory record is one of the file's 
extended directory entries (FXDE). Since a directory entry can 
contain information on up to four extents (see notes on the extent 
fields, beginning with DIR+ 22), a file that is fractured into more 
than four extents requires additional directory records. 

Bit 6-Specifies a SYStem file if "1;' a nonsystem file if "0:' 

Bit 5-lf set to "1;' indicates a Partition Data Set (PDS) file. 

Bit 4-lndicates whether the directory record is in use or not. If set to "1;' 
the record is in use. If "0;' the directory record is not active, 
although it may appear to contain directory information. In contrast 
to some operating systems that zero out the directory record when 
you remove a file, TRSDOS only resets this bit to zero. 

Bit 3-Specifies the visibility. If "1 ;· the file is INVisible to a directory dis
play or other library function where visibility is a parameter. If a "0;' 
then the file is VISible. (The file can be referenced if specified by 
name by an @INIT or @OPEN SVC.) 

Software 14 
• 



• 

• 

Bits 0-2 - Contain the USER protection level of the file. The 3-bit binary 
value is one of the following: 

0 = FULL 2 = RENAME 4 = UPDATE 6 = EXECUTE 
1 = REMOVE 3 = WRITE 5 = READ 7 = NO ACCESS 

DIR+1 

Contains various file flags and the month field of the packed date of last 
modification. 

Bit 7 -Set to "1" if the file was "CREATEd" (see CREATE library com
mand in the Disk System Owner's Manual). Since the CREATE 
command can reference a file that is currently existing but non
CREATEd, it can tum a non-CREATEd file into a CREATEd one. 
You can achieve the same effect by changing this bit to a "1:• 

Bit 6-11 set to "1;' the file has not been backed up since its last modifica
tion. The BACKUP utility is the only TRSDOS facility that resets 
this flag. It is set during the close operation if the File Control Block 
(FCB + 0, Bit 2) shows a modification of file data. 

Bit 5-11 set to "1;' indicates a file in an open condition with UPDATE 
access or greater. 

Bit 4-11 the file was modified during a session where the system date was 
not maintained, this bit is set to 'T This specifies that the packed 
date of modification (if any) stored in the next three fields is not the 
actual date the modification occurred. If this bit is "1," the 
directory command displays plus signs ( + ) between the date 
fields. 

Bits 0-3-Contain the binary month of the last modification date. If this 
field is a zero, DATE was not set when the file was established or 
since if it was updated. 

DIR+2 

Contains the remaining date of modification fields. 

Bits 3-7 - Contain the binary day of last modification. 

Bits 0-2-Contain the binary year minus 80. For example, 1980 is coded 
as 000, 1981 as 001, 1982 as 010, and so on. 

DIR+3 

Contains the end-of-file offset byte. This byte and the ending record number 
(ERN) form a pointer to the byte position that follows the last byte written. This 
assumes that programmers, interfacing in machine language, properly main
tain the next record number (NAN) offset pointer when the file is closed. 

DIR+4 

Contains the logical record length (LAL) specified when the file was generated 
or when it was later changed with a CLONE parameter. 

DIR +5 through DIR+ 12 

Contain the name field of the filespec. The filename is left justified and padded 
with trailing blanks. 

DIR+ 13 through DIR+ 15 

Contain the extension field of the filespec. It is left justified and padded with 
trailing blanks. 

DIR+16 and DIR+17 

Contain the OWNER password hash code . 

DIR+ 18 and DIR+ 19 

Contain the USER password hash code. The protection level in DIR+ 0 is asso
ciated with this password. 

Software 15 



DIR+28 and DIR+21 

Contain the ending record number (ERN), which is based on full sectors. H the 
ERN is zero, it indicates that no writing has taken place (or that the file was not 
closed properly). If the LRL is not 256, the ERN represents the sector where the 
EOF occurs. You should use ERN minus 1 to account for a value relative to sec
tor 0 of the file. 

DIR+22 and DIR+23 

This is the first extent field. Its contents indicate which cylinder stores the first 
granule of the extent, which relative granule it is, and how many contiguous 
grans are in use in the extent. 

DIR+ 22 -Contains the cylinder value for the starting gran of that extent. 

DIR+ 23, Bits 5-7 -Contain the number of the granule in the cylinder indi• 
cated by DIR+ 22 which is the first granule of the file for that 
extent. This value is relative to zero ("0" denotes the first gran, 
"1" denotes the second, and so on). 

DIR+ 23, Bits 0-4-Contain the number of contiguous granules, relative 
to 0 ("0" denotes one gran, "1" denotes two, and so on). Since 
the field is five bits, it contains a maximum of X'1 F' or 31, which 
represents 32 contiguous grans. 

DIR+24 and DIR+25 

Contain the fields for the second extent. The format is identical to that for 
Extent 1. 

DIR+26 and DIR+27 

Contain the fields for the third extent. The format is identical to that for Extent 1. 

DIR+28 and DIR+29 

Contain the fields for the fourth extent. The format is identical to that for 
Extent 1. 

DIR+38 

This is a flag noting whether or not a link exists to an extended directory record. 
H no further directory records are linked, the byte contains X'FF.' A value of X'FE' 
in this byte establishes a link to an extended directory entry. (See "Extended 
Directory Records" below.) 

DIR+31 

This is the link to the extended directory entry noted by the previous byte. The 
link code is the Directory Entry Code (DEC) of the extended directory record. 
The DEC is actually the position of the Hash Index Table byte mapped to the 
directory record. For more information, see the section "Hash Index Table:• 

Extended Directory Records 
Extended directory records (FXDE) have the same format as primary directory 
records, except that only Bytes 0, 1, and 21-31 are utilized. Within Byte 0, only 
Bits 4 and 7 are significant. Byte 1 contains the DEC of the directory record of 
which this is an extension. An extended directory record may point to yet 
another directory record, so a file may contain an "unlimited" number of extents 
(limited only by the total number of directory records available). 

Granule Allocation Table (GAT) 

The Granule Allocation Table (GAT) contains information on the free and 
assigned space on the disk. The GAT also contains data about the formatting 
used on the disk. 

Software 16 



• 

• 

A disk is divided into cylinders (tracks) and sectors. Each cylinder has a spec
ified number of sectors. A group of sectors is allocated whenever additional 
space is needed. This group is called a granule. The number of sectors per 
granule depends on the total number of sectors available on a logical drive. The 
GAT provides for a maximum of eight granules per cylinder. 

In the GAT bytes, each bit set to "1" indicates a corresponding granule in use 
(or locked out). Each bit reset to "0" indicates a granule free to be used. In a 
GAT byte, bit 0 corresponds to the first relative granule, bit 1 to the second rel
ative granule, bit 2 the third, and so on. A 5¼" single density diskette is format
ted at 10 sectors per cylinder, 5 sectors per granule, 2 granules per cylinder. 
Thus, that configuration uses only bits 0 and 1 of the GAT byte. The remainder 
of the GAT byte contains all 1's, denoting unavailable granules. Other formatting 
conventions are as follows: 

Sectors Sectors Granules Maximum 
per per per No.of 

Cylinder Granule C~linder C~linders 

5"SDEN 10 5 2 80 
5"DDEN 18 6 3 80 
8" SDJ=N 16 8 2 77 
8"DDEN 30 10 3 77 
Hard Disk 32 16 8 153 

•Hard drive format depends on the drive size and type, as well as the user's divi· 
sion of the drive into logical drives. These values assume that one physical 
hard disk is treated as one logical drive. 

The above table is valid for single-sided disks. TRSDOS supports double-sided 
operation if the hardware interfacing the physical drives to the CPU allows it. A 
two-headed drive functions as a single logical drive, with the second side as a 
cylinder-for-cylinder extension of the first side. A bit in the Drive Code Table 
(OCT+ 4, Bit 5) indicates one-sided or two-sided drive configuration. 

A Winchester-type hard disk can be divided by heads into multiple logical 
drives. Details are supplied with Radio Shack drives. 

The Granule Allocation Table is the first relative sector of the directory cylinder. 
The following information describes the layout and contents of the GAT. 

GAT + x·•·· through GAT + X'SP 

Contains the free/assigned table information. GAT + 0 corresponds to cylinder 
0, GAT + 1 corresponds to cylinder 1, GAT + 2 corresponds to cylinder 2, and so 
on. As noted above, bit 0 of each byte corresponds to the first granule on the 
cylinder, bit 1 to the second granule, and so on. A value of "1" indicates the 
granule is not available for use. 

GAT + X'68' through GAT + X'BF' 

Contains the available/locked out table information. It corresponds cylinder for 
cylinder in the same way as the free/assigned table. It is used during mirror
Image backups to determine if the destination diskette has the proper capacity 
to effect a backup of the source diskette. This table does not exist for hard 
disks; for this reason, mirror-image backups cannot be performed on hard disk. 

GAT + x·ce· through GAT + X'CJ){ 

Used in hard drive configurations; extends the free/assigned table from X'00' 
through X'C/( Hard drive capacity up to 203 (0-202) logical or 406 physical cyl
inders is supported. 

GAT+X'CB' 

Contains the operating system version that was used in formatting the disk. 
For example, disks formatted under TRSDOS 6.2 have a value of X'62' 
contained in this byte. It is used to determine whether or not the disk 
contains all of the parameters needed for TRSDOS operation. 

Software 17 



GAT+X"CC' 

Contains the number of cylinders in excess of 35. It is used to minimize the time 
required to compute the highest numbered cylinder formatted on the disk. It is 
excess 35 to provide compatibility with alien systems not maintaining this byte. 
If you have a disk that was formatted on an alien system for other than 35 cyl
inders, this byte can be automatically configured by using the REPAIR utility. 
(See the section on the REPAIR utility in the Disk System Owner's Manual.) 

GAT+X"CD' 

Contains data about the formatting of the disk. 

Bit 7 - If set to "1:· the disk is a data disk. If "0;' the disk is a system disk. 

Bit 6-lf set to "1;' indicates double-density formatting. If "0;' indicates 
single-density formatting. 

Bit 5-lf set to "1;• Indicates 2-sided disk. If "0;' indicates 1-sided disk. 

Bits 3-4-Reserved. 

Bits 0-2-Contain the number of granules per cylinder minus 1. 

GAT + X'CE' and GAT + X'CF' 

Contain the 16-blt hash code of the disk master password. The code is stored 
in standard low-order, high-order format. 

GAT + x·oe· through GAT + X'D7' 

Contain the disk name. This is the name displayed during a FREE or DIR oper
ation. The disk name is assigned during formatting or during an ATTRIB disk 
renaming operation. The name is left justified and padded with blanks. 

GAT+X"D8' through GAT+X"DF' 

Contain the date that the diskette was formatted or the date that it was used as 
the destination in a mirror image backup operation in the format mm/dd/yy. 

GAT + X'EI' through GAT + X'F P 

Reserved for system use. 

In Version 6.2: 

GAT + X'E8' through GAT + X'F4' 

Reserved for system use. 

GAT + X'FS' through GAT + X'FP 

Contain the Media Data Block (MOB). 

GAT + X'F5' through GAT + X'F8' - the identifying header. These four 
bytes contain a 3 (X'03'), followed by the letters LSI (X'4C',X-53',X'49'). 

GAT + X'F8' through GAT9 + X'FF' - the last seven bytes of the OCT 
in use when the media was formatted. FORMAT, MemDISK, and 
TRSFORM6 install this information. See Drive Control Table (OCT) for 
more information on these bytes. 

Hash Index Table (HIT) 
The Hash index Table is the key to addressing any file in the directory. It pin
points the location of a file's directory with a minimum of disk accesses, keeping 
overhead low and providing rapid file access. 

The system's procedure is to construct an 11-byte filename/extension field. The 
filename is left-justified and padded with blanks. The file extension is then 
inserted and padded with blanks; it occupies the three least significant bytes of 

Software 18 
• 



• 

• 

the 11-byte field. This field is processed through a hashing algorithm which pro
duces a single byte value in the range X'01' through X'FP. (A hash value of X'00' 
indicates a spare HIT position.) 

The system then stores the hash code in the Hash Index Table (HIT) at a posi
tion corresponding to the directory record that contains the file's directory. Since 
more than one 11-byte string can hash to identical codes, the opportunity for 
"collisions" exists. For this reason, the search algorithm scans the HIT for a 
matching code entry, reads the directory record corresponding to the matching 
HIT position, and compares the filename/extension stored in the directory with 
that provided in the file specification. If both match, the directory has been 
found. If the two fields do not match, the HIT entry was a collision and the algo
rithm continues its search from the next HIT entry. 

The position of the HIT entry in the hash table is called the Directory Entry Code 
(DEC) of the file. All files have at least one DEC. Files that are extended beyond 
four extents have a DEC for each extended directory entry and use more than 
one filename slot. To maximize the number of file slots available, you should 
keep your files below five extents where possible. 

Each HIT entry is mapped to the directory sectors by the DEC's position in the 
HIT. Think of the HIT as eight rows of 32-byte fields. Each row is mapped to one 
of the directory records in a directory sector: The first HIT row is mapped to the 
first directory record, the second HIT row to the second directory record, and so 
on. Each column of the HIT field (0-31) is mapped to a directory sector. The first 
column is mapped to the first directory sector in the directory cylinder (not 
including the GAT and HIT). Therefore, the first column corresponds to sector 
2, the second column to sector 3, and so on. The maximum number of HIT col
umns used depends on the disk formatting according to the formula: 
N = number of sectors per cylinder minus two, up to 32. 

The following chart shows the correlation of the Hash Index Table to the direc
tory records. Each byte value shown represents the position in the HIT. This 
position value is the DEC. The actual contents of each byte is either a X(00) 
indicating a spare slot, or the 1-byte hash code of the file that occupies the cor
responding directory record. 

Columns 

Row 1 00 01 02 83 04 05 06 07 08 09 0A 0B llC 00 0E 0F 
10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F 

Row2 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F 
30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F 

Row3 40 41 42 43 44 45 46 47 46 49 4A 4B 4C 4D 4E 4F 
~ ~ ~ ~ M ~ ~ ~ ~ ~ ~ ~ ~ W ~ ~ 

Row4 60 61 
70 71 

62 63 64 65 
72 73 74 75 

66 67 68 69 
76 77 78 79 

6A 6B BC 
7A 7B 7C 

6D 6E 6F 
7D 7E 7F 

Row5 80 81 82 
90 91 92 

Row6 A0 
80 

Row7 C0 
D0 

A1 A2 
B1 B2 

C1 C2 
D1 D2 

Row8 E0 E1 
F0 F1 

E2 
F2 

83 84 
93 94 

A3 A4 
B3 B4 

85 86 
95 96 

A5 A6 
B5 B6 

87 88 
97 98 

A7 AB 
B7 B8 

89 8A BB BC SD 
99 9A 98 9C 9D 

SE SF 
9E 9F 

A9 AA AB AC AD AE AF 
B9 BA BB BC BD BE BF 

C3 C4 C5 C6 C7 C8 C9 CA CB CC CD 
D3 D4 D5 D6 D7 D8 D9 DA DB DC DD 

CE CF 
DE DF 

E3 E4 E5 E6 E7 EB E9 EA EB EC ED EE EF 
F3 F4 F5 F6 F7 FB F9 FA FB FC FD FE FF 

A 5¼" single density disk has 10 sectors per cylinder, two of which are reserved 
for the GAT and HIT. Since only eight directory sectors are possible, only the 
first eight positions of each HIT row are used. Other formats use more columns 
of the HIT, depending on the number of sectors per cylinder in the formatting 
scheme. 

The eight directory records for sector 2 of the directory cylinder correspond to 
assignments in HIT positions 00, 20, 40, 60, 80, A0, C0, and E0. On system 

Software 19 



disks, the following positions are reserved for system overlays. On data disks, 
these positions ( except for 00 and 01) are available to the user. 

00 - BOOT/SYS 20- SYS6/SYS 
01 - DIR/SYS 21 - SYS7/SYS 
02 - SYS0/SYS 22 - SYSS/SYS 
03 - SYS1 /SYS 23 - SYS9/SYS 
04 - SYS2/SYS 24 - SYS10/SYS 
05 - SYS3/SYS 25 - SYS11 /SYS 
06 - SYS4/SYS 26 - SYS12/SYS 
07-SYS5/SYS 27-SYS13/SYS 

These entry positions correspond to the first two rows of each directory sector 
for the first eight directory sectors. Since the operating system accesses these 
overlays by position in the HIT rather than by filename, these positions are 
reserved on system disks. 

The design of the Hash Index Table limits the number of files on any one drive 
to a maximum of 256. 

Locating a Directory Record 

Because of the coding scheme used on the entries in the HIT table, you can 
locate a directory record with only a few instructions. The instructions are: 

and 

AND 1FH 
ADD A,2 

AND 0E0H 

(calculates the sector) 

(calculates the offset in that sector) 

For example, if you have a Directory Entry Code (DEC) of X'84', the following 
occurs when these instructions are performed: 

AND 1FH 

ADD A,2 

Value of accumulator 
A=X'84' 

A=X'04' 

A=X'06' 
The record is in the seventh 
sector of the directory cylinder 
(0-6) 

Using the Directory Entry Code (DEC) again, you can find the offset into the 
sector that was found using the above instructions by executing one 
instruction: 

AND 0E0H 

Value of accumulator 
A=X'84' 

A=X'80' 
The directory record is X'80' (128) 
bytes from the beginning of 
the sector 

If the record containing the sector is loaded on a 256-byte boundary (LSB of the 
address is X'00') and HL points to the starting address of the sector, then you 
can use the above value to calculate the actual address of the directory record 
by executing the instruction: 

LD L,A 

Software20 

• 



• 

• 

When executed after the calculation of the offset, this causes HL to point to the 
record. For example: 

A=X'80' 
LD HL ,4200H ;Where sector is loaded 
LD L , A ;Replace LSB with offset 

HL now contains 4280H, which is the address of the directory record you 
wanted . 

If you cannot place the sector on a 256-byte boundary, then you can use the 
following instructions: 

A=X'80' 
LD HL ,4256H ;Where sector is loaded 
LD E , A ;Put offset in E (LSB) 

LD D,0 
ADD HL,DE 

;Put a zero in D (MSB) 
;Add two values together 

HL now contains 4206H, which is the address of the directory record. 

Note that the first DEC found with a matching hash code may be the file's 
extended directory entry (FXDE). Therefore, if you are going to write system 
code to deal with this directory scheme, you must properly deal with the FPDE/ 
FXDE entries. See Directory Records for more information . 

Software 21 





• 

• 

6/File Control 

File Control Block (FCB) 

The File Control Block (FCB) is a 32-byte memory area. Before the file is 
opened, this space holds the file's filespec. After an @OPEN or @INIT super
visor call is performed, the system uses this area to interface with the file, and 
replaces the filespec with other information. When the file is closed, the filespec 
(without any specified password) is returned to the FCB. 

While a file is open, the contents of the FCB are dynamic. As records are written 
to or read from the disk file, specific fields in the FCB are modified. Avoid chang
ing the contents of the FCB during the time a file is open, unless you are sure 
that the change will not affect the integrity of the file. 

During most system access of the FCB, the IX index register is used to refer
ence each field of data. Register pair DE is used mainly for the initial reference 
to the FCB address. The information contained in each field of the FCB is as 
follows: 

FCB+8 

Contains the TYPE code of the control block. 

Bit 7 - If set to "1;' indicates that the file is in an open condition; if "0;· the 
file is assumed closed. This bit can be tested to determine the 
"open" or "closed" status of an FCB. 

Bit 6- ls set to "1" if the file was opened with UPDATE access or higher. 

Bit 5 - Indicates a Partition Data Set (PDS) type file. 

Bits 4-3-Reserved for Mure use. 

Bit 2- ls set to "1" if the system performed any WRITE operation on this 
file. It is used to update the MOD flag in the directory record when 
the file is closed. 

Bits 1-0-Reserved for future use. 

FCB+1 

Contains status flag bits used in read/write operations by the system. 

Bit 7 - If set to "1;· indicates that 1/0 operations will be either full sector 
operations or byte operations of logical record length (LAL) less 
than 256. If "0;• only sector operations will be performed. If you are 
going to use only full-sector 1/0, you can reduce system overhead 
by specifying the LAL at open time as 0 (indicating 256). An LAL 
of other than 256 sets bit 7 to "1" on open. 

Bit 6- If set to "1;' indicates that the end of file (EOF) is to be set to ending 
record number (ERN) only if next record number (NAN) exceeds 
the current value of EOF. This is the case if random access is to be 
used. During random access, the EOF is not disturbed unless you 
extend the file beyond the last record slot. Any time the position 
routine (@POSN) is called, bit 6 is automatically set. If bit 6 is "0;' 
then EOF will be updated on every WRITE operation. 

Bit 5-lf "0;' then the disk 1/0 buffer contains the current sector denoted 
by NAN. If set to "1;' then the buffer does not contain the current 
sector. During byte 1/0, bit 5 is set when the last byte of the sector 
is read. A sector read resets the bit, showing the buffer to be 
current. 

Software 23 



Bit 4-lf set to "1;' indicates that the buffer contents have been changed 
since the buffer was read from the file. It is used by the system to 
determine whether the buffer must be written back to the file before 
reading another record. If "0;' then the buffer contents were not 
changed. 

Bit 3-Used to specify that the directory record is to be updated each time 
the NAN exceeds the EOF. (The normal operation is to update the 
directory only when an FCB is closed.) Some unattended opera
tions may use this extra measure of file protection. It is specified by 
adding an exclamation mark (" !") to the end of a filespec when the 
filespec is requested at open time. 

Bits 2-0-Contain the user (access) protection level as retrieved from the 
directory of the file. The 3-bit binary value is one of the following: 

0=FULL 2=RENAME 4=UPDATE 6=EXECUTE 
1=REMOVE 3=WRITE 5=READ 7=NOACCESS 

FCB+2 

Used by Partition Data Set (PDS) files. 

FCB+3 and FCB+4 

Contain the buffer address in low-order, high-order format. This is the buffer 
address specified in register pair HL when the @INIT or @OPEN SVC is 
performed. 

FCB+S 

Contains the relative byte offset within the current buffer for the next 1/0 oper
ation. If this byte has a zero value, then FCB + 1, Bit 5 must be examined to see 
if the first byte in the current buffer is the target position or if it is the first byte of 
the next record, If you are performing sector 1/0 of byte data (that is, maintain
ing your own buffering), then it is important to maintain this byte when you close 
the file if the true end of file is not at a sector boundary. 

FCB+6 

Bits 3-7 -Reserved for system use. 

Bits 0-2 -Contain the logical drive number in binary of the drive contain
ing the file. Do not modify this byte; altering this value may damage 
other files. This byte and FCB + 7 are the only links to the file's 
directory information. 

FCB+7 

Contains the directory entry code (DEC) for the file. This code is the offset in the 
Hash Index Table where the hash code for the file appears. Do not modify this 
byte; altering this value may damage other files. This byte and FCB + 6 are the 
only links to the directory information for the file. 

FCB+8 

Contains the end-of-file byte offset. This byte is similar to FCB + 5 except that it 
pertains to the end of file rather than to the next record number. 

FCB+9 

Contains the logical record length that was in effect when the file was opened. 
This may not be the same LAL that exists in the directory. The directory LAL is 
generated at the file creation and never changes unless the file is overwritten. 

FCB+18and FCB+11 

Contain the next record number (NAN), which is a pointer for the next 1/0 oper
ation. When a file is opened, NAN is zero, indicating a pointer to the beginning . 
Each sequential sector 1/0 advances NAN by one. 

Software 24 

• 



• 

• 

FCB + 12 and FCB + 13 

Contain the ending record number. (ERN) of the file. This is a pointer to the sec
tor that contains the end-of-file indicator. In a null file (one with no records), 
ERN equals 0. If one sector has been written, ERN equals 1. 

FCB + 14 and FCB + 15 

Contain the same information as the first extent of the directory. This represents 
the starting cylinder of the file (FCB + 14) and the starting relative granule within 
the starting cylinder (FCB + 15). FCB + 15 also contains the number of contig
uous granules allocated in the extent. These bytes are used as a pointer to the 
beginning of the file referenced by the FCB. 

FCB + 16 through FCB + 19 

This 4-byte entry contains granule allocation information for an extent of the file. 
Relative bytes 0 and 1 contain the total number of granules allocated to the file 
up to but not including the extent referenced by this field. Relative byte 2 con
tains the starting cylinder of this extent. Relative byte 3 contains the starting rel
ative granule for the extent and the number of contiguous granules. 

FCB + 28 through FCB + 23 

Contain information similar to the above but for a second extent of the file. 

FCB + 24 through FCB + 27 

Contain information similar to the above but for a third extent of the file. 

FCB + 28 through FCB + 31 

Contain information similar to the above but for a fourth extent of the file. 

The file control block contains information on only four extents at one time. If 
the file has more than four extents, additional directory accessing is done to 
shift the 4-byte entries in order to make space for the new extent information. 

Although the system can handle a file of any number of extents, you should 
keep the number of extents small. The most efficient file is one with a single 
extent. The number of extents can be reduced by copying the file to a disk that 
contains a large amount of free space . 

Software 25 



• 



• 

• 

7 /TRSDOS Version 6 
Programming Guidelines 

Converting to TRSDOS Version 6 

This section provides suggestions on writing programs effectively with 
TRSDOS Version 6, and on converting programs created with TRSDOS 1.3 
and LDOS 5.1 operating systems for use with TRSDOS Version 6. This infor
mation is by no means complete, but presents some important concepts to 
keep in mind when using TRSDOS Version 6. 

When programming in assembly language, you can use TRSDOS Version 6 
routines for commonly used operations. These are accessed through the 
supervisor calls (SVCs) instead of absolute call addresses. Nothing in the sys
tem can be accessed via any absolute address reference ( except Z-80 RST 
and NMI jump vectors). 

IMPORTANT NOTE: TRSDOS provides all functions and storage through 
supervisor calls. No address or entry point below 3000H is documented or sup
ported by Radio Shack. 

The keyboard is not accessible via "peeking;• and the video RAM cannot be 
"poked:' The keyboard and video are accessible only through the appropriate 
SVCs. 

Another distinction is that TRSDOS Version 6 handling of logical byte 1/0 
devices (keyboard, video, printer, communications line) completely supports 
error status feedback. A FLAG convention is uniform throughout these device 
drivers as well as physical byte 1/0 associated with files. The device handling 
in TRSDOS Version 6 is completely independent. That means that byte 1/0, 
both logical and physical, can be routed, filtered, and linked. Therefore, it is 
important to test status return codes in all applications using byte 1/0 regard
less of the device that the application expects to be used, since re-direction to 
some other device is possible at the TRSDOS level. Appropriate action must be 
taken when errors are detected. 

Modules loaded into memory and protected by lowering HIGH$ must include 
the standard header, as described earlier under "Memory Header:· The 
@GTMOD supervisor call requires that this header be present in every resident 
module for proper operation. 

The file password protection terms of UPDATE and ACCESS have been 
changed in TRSDOS Version 6 to OWNER and USER, respectively. The addi
tional file protection level of UPDATE has been added. A file with UPDATE pro
tection level can be read or written to, but its end of file cannot be extended. 
This protection can be useful in a random access fixed-size file or in a file where 
shared access is to take place. 

Files opened with UPDATE or greater access are indicated as open in their 
directory. Attempting to open the file again forces a change to READ access 
protection and a "File already open" error code. It is therefore important for 
applications to CLOSE files that are opened. 

For the convenience of applications that access files only for reading, you can 
inhibit the "file open bit:' If you set bit 0 of the system flag SFLAG$ (see the 
@FLAGS supervisor call), the file open bit is not set in the file's directory. Once 
set, the next @OPEN or @INIT SVC automatically resets bit 0 of SFLAG$. 
Note that you cannot use this procedure for files being written to, since it inhibits 
the CLOSE process. 

Software 27 



Some application programs need access to certain system parameters and 
variables. A number of flags, variables, and port images can be accessed rel
ative to a flag pointer obtained via the @FLAGS supervisor call. These param
eters are only accessible relative to this pointer, as the pointer's location may 
change. (See the explanation of the @FLAGS SVC.) 

All applications must honor the contents of HIGH$. This pointer contains the 
highest RAM address usable by any program. You can retrieve and change 
HIGH$ by using the @HIGH$ SVC. 

TRSDOS Version 6 library commands and utilities supply a return code (RC) at 
completion. The RC is returned in register pair HL. The value returned is either 
zero (indicating no error), a number from one through 62 (indicating an error as 
noted in Appendix A, TRSDOS Error Messages), or X'FFFF' (indicating an 
extended error which is currently not assigned an error number). TRSDOS Ver
sion 6 Job Control Language (JCL) aborts on any program terminating with a 
non-zero RC value. Applications should therefore properly set the return code 
register pair HL before exiting. 

TRSDOS Version 6 library commands are also invokable via the @CMNDR 
SVC which executes the command. Library commands properly maintain the 
Stack Pointer (SP) and exit via a RET instruction. In this manner, control is 
returned to the invoking program with the RC present for testing. For com
mands invoked with the @CMNDI SVC or prompted for via the @EXIT SVC, 
the SP is restored to the system stack. The top of the stack will contain an 
address suitable for simulating an @EXIT SVC; thus, if your application pro
gram properly maintains the integrity of the stack pointer, it can exit after setting 
the RC via a RET instruction instead of an @EXIT SVC. 

TRSDOS Version 6 diskette and file structure is identical to that used in LOOS 
5.1. This includes formatting, directory structure, and data address mark con
ventions. TRSDOS Version 6 system diskettes, however, use the entire BOOT 
track (track 0). This compatibility means that data files may be used inter
changeably between LOOS 5.1 equipped machines and TRSDOS Version 6 
equipped machines; the diskettes themselves are readable and writable across 
both operating systems. 

The methods of internal handling of device linking and filtering have been 
changed from LDOS 5.1. (It is beyond the scope of this manual to explain the 
internal functioning of TRSDOS Version 6.) Device filters must adhere to a strict 
protocol of linkage in order to function properly. See the section on "Device 
Driver and Filter Templates" for information on device driver and filter protocol. 

Stack Handling Restrictions* 
Interrupt tasks and filters that deal with the keyboard or video must not place 
the stack pointer above X'F3FF: This is because any operation that requires the 
keyboard or video RAM switches in the 3K bank at X'F400' and suppresses the 
stack until it is switched out again. If the system accesses the stack at any time 
during this period, the integrity of the stack is destroyed. 

*In TRSDOS 6.0.0, the stack cannot be placed above X'F3FF' for any reason .. 

Software 28 

• 



• 

• 

Programming With Restart Vectors 

The Restart instruction (RST) provides the assembly language programmer 
with the ability to call a subroutine with a one-byte call. If a routine is called 
many times by a program, the amount of space that is saved by using the RST 
Instruction (instead of a three-byte CALL) can be significant. 

In TRSDOS a RST instruction is also used to interface to the operating system . 
The system uses RST 28H for supervisor calls. RSTS 00H, 30H, and 38H are 
for the system's internal use. 

RSTs 08H, 10H, 18H, and 20H are available for your use. Caution: Some pro
grams, such as BASIC, may use some of these RSTs. 

Each RST instruction calls the address given in the operand field of the instruc
tion. For example, RST 18H causes the system to push the current program 
counter address onto the stack and then set the program counter to address 
0018H. RST 20H causes a jump to location 0020H, and so on. 

Each RST has three bytes reserved for the subroutine to use. If the subroutine 
will not fit in three bytes, then you should code a jump instruction (JP) to where 
the subroutine is located. At the end of the subroutine, code a return instruction 
(RET). Control is then transferred to the instruction that follows the RST. 

For example, suppose you want to use RST 18H to call a subroutine named 
"ROUTINE:' The following routine loads the restart vector with a jump instruc
tion and saves the old contents of the restart vector for later use. 

SETRST: LD IX ,0018H ;Restart area address 
LO IY,RDATA rnata area address 
LD 5,3 ;Number of bytes to Move 

LOOP: LD A,<IXl ;Read a byte from 
; restart area 

LD Ct!IYl ;Read a byte f ram data 
; a re a 

LD < IX> ,C ;store this bYte in 
;restart area 

LD <IYl,A ;store this bYte in data 
; area 

INC IX ; Inc reMent restart area 
;pointer 

INC IY ; Inc reMent data area 
;Pointer 

DJNZ LOOP ;LOOP till 3 bYtes moved 
RET ;Return when done 

RDATA: DEFB 0C3H ;JUMP instruction <JP> 
DEFW ROUTINE ;Qpe rand (name of 

;subroutine) 
Before exiting the program, calling the above routine again puts the original 
contents of the restart vector back in place. 

KFLAG$ (BREAK), (PAUSE), and (ENTER) 
Interfacing 

KFLAG$ contains three bits associated with the keyboard functions of BREAK, 
PAUSE (~ @ID), and ENTER. A task processor interrupt routine (called the 
KFLAG$ scanner) examines the physical keyboard and sets the appropriate 
KFLAG$ bit if any of the conditions are observed. Similarly, the RS-232C driver 
routine also sets the KFLAG$ bits if it detects the matching conditions being 
received. 

Software 29 



Many applications need to detect a PAUSE or BREAK while they are running. 
BASIC checks for these conditions after each logical statement is executed 
(that is, at the end of a line or at a ":"). That is how, in BASIC, you can stop a 
program with the (IIIEm key or pause a listing. 

One method of detecting the condition in previous TRSDOS operating systems 
was to issue the @KBD supervisor call to check for BREAK or PAUSE 
(IJIIID')~). ignoring all other keys. Unfortunately, this caused keyboard type
ahead to be ineffective; the @KBD SVC flushed out the type-ahead buffer if 
any other keystrokes were stacked up. 

Another method was to scan the keyboard, physically examining the keyboard 
matrix. An undesirable side effect of this method was that type-ahead stored up 
the keyboard depression for some future unexpected input request. Examining 
the keyboard directly also inhibits remote terminals from passing the BREAK or 
PAUSE condition. 

In TRSDOS V!3rsion 6, the KFLAG$ scanner examines the keyboard for the 
BREAK, PAUSE, and ENTER functions. If any of these conditions are detected, 
appropriate bits in the KFLAG$ are set (bits 0, 1, and 2 respectively). 

Note that the KFLAG$ scanner only sets the bits. It does not reset them 
because the "events" would occur too fast for your program to detect. Think of 
the KFLAG$ bits as a latch. Once a condition is detected (latched), it remains 
latched until something examines the latch and resets it-a function to be per
formed by your KFLAG$ detection routine. 

Under Version 6.2, you can use the @CKBRKC SVC, SVC 106, to see if the 
BREAK key has been pressed. If a BREAK condition exists, @CKBRKC resets 
the break bit of KFLAG$. 

For illustration, the following example routine uses the BREAK and PAUSE 
conditions: 

KFLAG$ 
@FLAGS 
@KBD 
@KEY 
@PAUSE 
CK PAWS 

FLUSH 

PROMPT 

RESKFL 

RESKFL1 

EQU 10 
E

0

QU 101 
EQU 8 
EQU 1 
EQU 16 
LD A,@FLAGS 
RST 28H 
LD A,< IY+KFLAG$l 
RRCA 
JP C,GOTBRK 
RRCA 
RET NC 
CALL RESKFL 
PUSH DE 
LD A,@KBD 
RST 28H 
JR Z,FLUSH 
POP DE 
PUSH DE 
LD A,@KEY 
RST 28H 
POP DE 
CP 80H 
JP Z,GOTBRK 
CP 60H 
JR Z,PROMPT 
PUSH HL 
PUSH AF 
LD A,@FLAGS 
RST 28H 
LD A,< IY+KFLAG$l 
AND 0FBH 

Software 30 

iGet FlafS Pointer 
; in to re!fister IY 
;Get the KFLAG$ 
iBit 0 to car rY 
;Go on BREAK 
iBit 1 to car rY 
;Return if no Pause 
;Reset the flH 

iFlush tYPe-ahead 
ibuffer while 
; i !fn or in !f errors 

iWait on key ent rY 

iAbo rt on(l!IEIK) 

;I!fnore PAUSEi 
;else • • • 
;reset KFLAG$ 

iGet fla•s Pointer 
iinto re9'ister IY 
iGet the fla• 
iStriP ENTER, • 



• 

• 

LO ( IY+KFLAG$l ,A I PAUSE, BREAK 
PUSH BC 
LO B ·,16 
LO A,@PAUSE ;Pause a while 
RST 28H 
POP BC 
LO A,(IY+KFLAG$l !Check if fin !er is 
AND 3 !still on key 
JR NZ,RESKFL1 !Reset it a!tain 
POP AF !Restore re! is t e rs 
POP HL iand exit 
RET 

The best way to explain this KFLAG$ detection routine is to take it apart and 
discuss each subroutine. The first piece reads the KFLAG$ contents: 

KFLAG$ EQU 1121 
CK PAWS LO A ,@FLAGS 

RST 28H 
LO A,(IY+KFLAG$l 
RRCA 
JP 
RRCA 

C,GOTBRK 

RET NC 

!Get Fla!s Pointer 
!into re!ister IY 
!Get the KFLAG$ 
!Bit 0 to carry 
!Go on BREAK 
!Bit 1 to carrY 
;Return if no Pause 

The @FLAGS SVC obtains the flags pointer from TRSDOS. Note that if your 
application uses the IY index register, you should save and restore it within the 
CKPAWS routine. (Alternatively, you could use @FLAGS to calculate the loca
tion of KFLAG$, use register HL instead of IV, and place the address into the LO 
instructions of CKPAWS at the beginning of your application.) 

The first rotate instruction places the BREAK bit into the carry flag. Thus, if a 
BREAK condition is in effect, the subroutine branches to "GOTBRK;' which is 
your BREAK handling routine. 

If there is no BREAK condition, the second rotate places what was originally in 
the PAUSE bit into the carry flag. If no PAUSE condition is in effect, the routine 
returns to the caller. 

This sequence of code gives a higher priority to BREAK (that is, if both BREAK 
and PAUSE conditions are pending, the BREAK condition has precedence). 
Note that the GO"fBRK routine needs to clear the KFLAG$ bits after it services 
the BREAK condition. This is easily done via a call to RESKFL. 

The next part of the routine is executed on a PAUSE condition: 

CALL RESKFL !Reset the fl a! 
PUSH DE 

FLUSH LO A ,@KBD !Flush tYPe-ahead 
RST 28H !buffer while 
JR Z,FLUSH li!norin! errors 
POP DE 

First the KFLAG$ bits are reset via the call to RESKFL. Next, the routine takes 
care of the possibility that type-ahead is active. If it is, the PAUSE key was prob
ably detected by the type-ahead routine and so is stacked in the type-ahead 
buffer also. To flush out (remove all stored characters from) the type-ahead 
buffer, @KBD is called until no characters remain (an NZ is returned). 

Now that a PAUSEd state exists and the type-ahead buffer is cleared, the rou
tine waits for a key input: 

PROMPT PUSH DE 
LO A ,@KEY !Wait on key ent rY 
RST 28H 
POP DE 
CP 80H !Abort on (l!laKl 
JP Z ,GOTBRK 

Software31 



CP 60H II fn ore PAUSE; 
JR Z , PROMPT ; else , , , 

The PROMPT routine accepts a BREAK and branches to your BREAK han
dling routine. It ignores repeated PAUSE (the 60H). Any other character causes 
it to fall through to the following routine which clears the KFLAG$: 

RESKFL PUSH HL ; reset KFLAGS 
PUSH AF 
LO A,@FLAGS 
RST 28H 

RESKFL1 LO A,<IY+KFLAG$) 
AND 0FBH 
LO (IY+KFLAGS) ,A 
PUSH BC 
LO B, 16 
LO A,@PAUSE 
RST 28H 
POP BC 
LO A,!IY+KFLAG$) 
AND 3 
JR NZ,RESKFLI 
POP AF 
POP HL 
RET 

!Get flafs Pointer 
!into refister IY 
!Get the flaf 
IStriP ENTER, 
!PAUSE, BREAK 

;Pause a while 

;check 
ht ill 
;Reset 

if finfer is 
on key 
it asain 

;Restore resisters 
;and e><it 

The RESKFL subroutine should be called when you first enter your application. 
This is necessary to clear the flag bits that were probably in a "set" condition. 
This "primes" the detection. The routine should also be called once a BREAK, 
PAUSE, or ENTER condition is detected and handled. (You need to deal with 
the flag bits for only the conditions you are using.) 

Interfacing to @ICNFG 
With the TRSDOS library command SYSGEN, many users may wish to SYS
GEN the RS-232C driver. Before doing that, the RS-232C hardware (UART, 
Baud Rate Generator, etc.) must be initialized. Simply using the SYSGEN com
mand with the RS-232C driver resident is not enough; some initialization 
routine is necessary. The @ICNFG (Initialization CoNFiGuration) vector is 
included in TRSDOS to provide a way to invoke a routine to initialize the RS-
232C driver when the system is booted. It also provides a way to initialize the 
hard disk controller at power-up (required by the Radio Shack hard disk 
system). 

The final stages of the booting process loads the configuration file CONFIG/ 
SYS if it exists. After the configuration file is loaded, an initialization subroutine 
CALLs the @ICNFG vector. Thus, any initialization routine that is part of a 
memory configuration can be invoked by chaining into @ICNFG. 

If you need to configure your own routine that requires initialization at power-up, 
you can chain into @ICNFG. The following procedure illustrates this link. The 
first thing to do is to move the contents of the @ICNFG vector into your initiali
zation routine: 

LO A,@FLAGS ;Get flafS Pointer 
RST 28H ;into resister IY 
LO A,< IY+28) ;Get oPcode 
LO (LINK>,A 
LO L,<IY+29) !Get address LOW 
LO H, ( I Y+30) ;Get address HIGH 
LO ( LINK+l l ,HL 

This subroutine does this by transferring the 3-byte vector to your routine. You 
then need to relocate your routine to its execution memory address. Once this 

Software 32 



• 

• 

is done, transfer the relocated initialization entry point to the @ICNFG vector as 
a jump instruction: 

LD 
LD 
LD 
LD 
LD 

HL,INIT 
< IY+29) ,L 
(IY+30l,H 
A,0C3H 
( IY+28) ,A 

iGet < relocated> 
iinit address 

;set JP instruction 

If you need to invoke the initialization routine at this point, then you can use: 

CALL ROUTINE ilnvake ,our routine 

Your initialization routine would be unique to the function it was to perform, but 
an overall design would look like this: 

INIT CALL ROUTINE iStart of init 
LINK DEFS 3 ;continue on 
ROUTINE 

Your initialization routine 

RET 

After linking in your routine, perform the SYSGEN. If you have followed these 
procedures, your routine will be invoked every time you start up TRSD0S. 

Interfacing to @KITSK 
Background tasks can be invoked in one of two ways. For tasks that do not 
require disk 1/0, you can use the RTC (Real Time Clock) interrupt and one of 
the 12 task slots (or other external interrupt). For tasks that require disk 1/0, you 
can use the keyboard task process. 

At the beginning of the TRSD0S keyboard driver is a call to @KITSK. This 
means that any time that @KBD is called, the @KITSK vector is also called. 
(The type-ahead task, however, bypasses this entry so that @KITSK is not 
called from the type-ahead routine.) Therefore, if you want to interface a back
ground routine that does disk 1/0, you must chain into @KITSK. 

The interfacing procedure to @KITSK is identical to that shown in the section 
"Interfacing to @ICNFG;' except that IV+ 31 through IV+ 33 is used to refer
ence the @KITSK vector. You may want to start your background routine with: 

START CALL ROUTINE ilnvoke task 
LINK DEF·S 3 ;For @KITSK hook 
ROUTINE EQU $ ;start of the task 

Be aware of one major pitfall. The @KBD routine is invoked from @CMNDI and 
@CMNDR (which is in SYS1/SYS). This invocation is from the @KEVIN call, 
which fetches the next command line after issuing the "TRSDOS Ready" mes
sage. If your background task executes and opens or closes a file (or does any
thing to cause the execution of a system overlay other than SYS1 ), then SYS1 
is overwritten by SYS2 or SYS3. When your routine finishes, the @KEVIN han
dler tries to return to what called it-SYS1, which is no longer resident. There
fore, any task chained to @KITSK which causes a resident SYS1 to be over
written must reload SYS1 before returning. 

You can use the following code to reload SYS1 if SYS1 was resident prior to 
your task's execution: 

ROUTINE LD 
RST 
LD 
AND 
LD 

A,@FLAGS 
28H 
AdIY-1) 
BFH 
( OLDSYS+1 l ,A 

Software 33 

;Get flats Pointer 
iinto retister IY 

resident over-
ilaY and remove 
Hhe ent rY code 



rest of ,our task 

EXIT EQU $ 

OLDSYS LO A ,0 
CP 83H 
RET NZ 
RST 28H 

Interfacing to the Task Processor 

!Get old overlay• 
llolas it SYS!? 
!Return if natl else 
!Get SYS! Per re!, A 
l(no RET needed) 

This section explains how to integrate interrupt tasks into your applications. 

One of the hardware interrupts in the TRS-80 is the real time clock (ATC). The 
ATC is synchronized to the AC line frequency and pulses at 60 pulses per sec
ond, or once every 16.67 milliseconds. (Computers operating with 50 Hz AC 
use a 50 pulses per second ATC interrupt. In this case, all time relationships 
discussed in this section should be adjusted to the 50 Hz base.) 

A software task processor manages the ATC interrupt in performing back
ground tasks necessary to specific functions of TRSDOS (such as the time 
clock, blinking cursor, and so on). The task processor allows up to 12 individual 
tasks to be performed on a "time-sharing" basis. 

These tasks are assigned to ''task slots" numbered from 0 to 11. Slots 0-7 are 
considered "low priority" tasks (executing every 266.67 milliseconds). Slots 8-
10 are medium priority tasks (executing every 33.33 milliseconds). Slot 11 is a 
high priority task (executing every 16.66 milliseconds SYSTEM (FAST) or 33.33 
milliseconds SYSTEM (SLOW)). Task slots 3, 7, 9, and 10 are reserved by the 
system for the ALIVE, TRACE, SPOOL, and TYPE-AHEAD functions, 
respectively. 

TRSDOS maintains a Task Control Block Vector Table (TCBVT) which contains 
12 vectors, one for each of the 12 task slots. TRSDOS contains five supervisor 
calls that manage the task vectors. The five SVCs and their functions are: 

@CKTSK Checks to see whether a task slot is unused or active 
@ADTSK Adds a task to the TCBVT 
@RMTSK Removes a task from the TCBVT 
@KLTSK Removes the currently executing task 
@RPTSK Replaces the TCB address for the current task 

The TRSDOS Task Control Block Vector Table contains vector pointers. Each 
TCBVT vector points to an address in memory, which in turn contains the 
address of the task. Thus, the tasks themselves are indirectly addressed. 

When you are programming a task to be called by the task processor, the entry 
point of the routine needs to be stored in memory. If you make this storage loca
tion the beginning of a Task Control Block (TCB), the reason for indirect vector
ing of interrupt tasks will become more clear. Consider an example TCB: 

MYTCB DEFlol MYTASK 
COUNTER DEFB 15 
TEMPY DEFS 1 
MYTASK RET 

This is a useless task, since the only thing it does is return from the interrupt. 
However, note that a TCB location has been defined as "MYTCB" and that this 
location contains the address of the task. A few more data bytes immediately 
following the task address storage have also been defined. 

Upon entry to a service routine, index register IX contains the address of the 
TCB. You can therefore address any TCB data using index instructions. For 
example, you could use the instruction "DEC (IX+ 2)" to decrement the value 
contained in COUNTER in the above routine. 

Software34 

• 



I 

I 

Here is the routine expanded slightly: 

MYTCB DEFW MYTASK 
COUNTER DEFB 15 
TEMPY DEFB 111 
MYTASK DEC < IX+2 l 

RET NZ 
LD <IX+2l,15 
RET 

This version makes use of the counter. Each time the task executes, the counter 
is decremented. When the count reaches zero, the counter is restored to its 
original value. 

In order to be executed, all tasks must be added to the TCBVT. The @ADTSK 
supervisor call does this. For the above routine, assume the task slot chosen is 
low-priority slot 2. You can ascertain that slot 2 is available for use by using the 
@CKTSK SVC as follows: 

LD C ,2 
LD A ,28 
RST 28H 
JP NZ ,I NUSE 

!Reference slot 2 
!Set far @CKTSK SVC 
;An '1 NZ 1

' indication 
lsa,s that the slot is 
;bein~ used. 

Once you determine that the slot is available (that is, not being used by some 
other task), you can add your task routine. The following code adds this task to . 
theTCBVT: 

LD DE ,MYTCB 
LD C ,2 
LD A ,29 
RST 28H 

!Point ta the TCB 
!Reference slot 2 
!Set far @ADTSK SVC 
!Issue the SVC 

The above program lines point register DE to the TCB, load the task slot num
ber into register C, and then issue the @ADTSK supervisor call. If you want this 
task to run regardless of what is in memory, you can place it in high memory ( of 
bank 0) and protect it by moving HIGH$ below it via the @HIGH$ supervisor 
call. 

Once a task has been activated, it is sometimes necessary to deactivate it. You 
can do this in two ways. The most common way is to use the @RMTSK super
visor call: 

LD C ,2 

LD A ,3111 
RST 28H 

1Desi5nate the task 
!slat 
!Set for @RMTSK SVC 
II ssue the SVC 

You identify the task slot to remove by placing a value in register C, and then 
you issue the supervisor call. 

You can use another method if you want to remove the task while it is being 
executed. Examine the routine modified as follows: 

MYTCB DEFW MYTASK 
COUNTER DEFB 1111 
TEMPY DEFB 111 

MYTASK DEC < IX+2 l 
RET NZ 
LD A,32 !Set for @KLTSK SVC 
RST 28H !Issue the SVC 

The @KLTSK supervisor call removes the currently executing task from the 
TCBVT. The system does not return to your routine, but continues as if you had 
executed a RET instruction. For this reason, the @KLTSK SVC should be the 
last instruction you want executed. In this example, MYTASK decrements the 
counter by one on each entry to the task. When the counter reaches zero, the 
task is removed from slot 2. 

Software 35 



The last task processor supervisor call is @RPTSK. The @RPTSK function 
updates the TCB storage vector (the vector address in your Task Control Block) 
to be the address immediately following the @RPTSK SVC instruction. As with 
@KLTSK, the system does not return to your service routine after the SVC is 
made, but continues on with the' task processor. The following example illus
trates how @RPTSK can be used in a program: 

@ADTSK 
@RPTSK 
@RMTSK 
@EXIT 
@VDCTL 
BEGIN 

TCB 
COUNTER 
TASKA 

TASK 

TASKB 

ORG 9111111111H 
EQU 29 
EQU 31 
EQU 3111 
EQU 22 
EQU 15 
LD DE,TCB 
LD C ,111 
LD A,@ADTSK 
RST 28H 
LD A ,@EXIT 
RST 28H 
DEFW TASK 
DEFB 15 
LD A,@RPTSK 
RST 28H 
LD BC,11127CH 
LD HL ,1111114FH 
LD A,@VDCTL 
RST 28H 
DEC (IX+2) 
RET NZ 
LD (IX+2l,15 
LD A,@RPTSK 
RST 28H 
LD BC,11122DH 
LD HL ,1111114FH 
LD A,@VDCTL 
RST 28H 
DEC < IX+2) 
RET NZ 
LD (IX+2) ,15 
JR TASKA 
END BEGIN . 

!Point to TCB 
land add the tasK 
Ito slot 111 

IEKit to TRSDOS 

;RePlace current 
ltasK with TASKA 
;Put a character 
lat Row 111, Col. 79 

iDecrement the counter 
land return if not 
leKPiredl else reset 
!Replace the Previous 
ltasK with TASKB 
;Put a chafacter 
lat Row 111, Col, 79 

This task routine contains no method of relocating it to protected RAM. The 
statements starting at the label BEGIN add the task to TCBVT slot 0 and return 
to TRSDOS Ready. The task contains a four-second down counter and a rou
tine to put a character in video RAM (8111th character of Row 0). At four-second 
intervals, the character toggles between 'I' and ' - : This is done by using the 
@RPTSK SVC to toggle the execution of two separate routines which perform 
the character display. 

TRSDOS uses bank-switched memory. In order to property control and man
age this additional memory, certain restrictions are placed on tasks. All tasks 
must be placed either in low memory (addresses X'0000' through X'7FFF') or 
in bank zero of high memory (addresses X'8000' through X'FFFF'). The task 
processor always enables bank zero when performing background tasks. The 
assembly language programmer must ensure that tasks are placed in the cor
rect memory area. 

Interfacing RAM Banks 1 and 2 
The proper use of the RAM bank transfer techniques described here requires a 
high degree of skill in assembly language programming. This section on bank 
switching is intended for the professional. 

Software 36 

• 



• 

• 

The TR$-80 Model 4 can optionally support a second set of 64K RAM, bringing 
the total RAM to 128K. TRSDOS designates this ex1ra 64K RAM as two banks 
of 32K RAM each, which are banks 1 and 2 of bank-switched RAM. The upper 
32K of standard RAM is designated bank 0. At any one time, only one of the 
banks is resident. The resident bank is always addressed at X'8000' through 
X'FFFF: When a bank transfer is performed, the specified bank becomes 
addressable and the previous bank is no longer available. Since memory 
refresh is performed on all banks at all times, nothing in the previously resident 
bank is altered during whatever time it is not addressable (that is, not resident) . 

You can access this additional RAM by means of the @BANK supervisor call 
(SVC 102). When you power up your computer or press reset, TRSD0S looks 
to see which banks of RAM are installed in your machine. TRSD0S maintains 
a bit map in one byte of storage, with each bit representing one of the banks of 
RAM. This byte is called "Bank Available RAM" (BAR), and its information is set 
when you boot TRSD0S. Bit 0 corresponds to bank 0, bit 1 corresponds to 
bank 1, and so on up to bit 7. From a hardware standpoint, the Model 4 has a 
maximum of three banks. You have either bank 0 only (a 64K machine), or 
banks 0-2 (a 128K machine). 

Another bit map is used to indicate whether a bank is reserved or available for 
use. This byte is called the "Bank Used RAM" (BUR). Again, bit 0 corresponds 
to bank 0, bit 1 to bank 1, and so on. TRSD0S design supports the use of banks 
1 and 2 primarily for data storage (for example, a spool buffer, Memdisk, etc.). 
The management of any memory space within a particular bank of RAM 
(excluding bank 0) is the responsibility of the application program "reserving" a 
particular bank. 

TRSD0S requires that any device driver or filter that is relocated to high mem
ory (X'8000' through X'FFFF') reside in bank 0. The TRSD0S device handler 
always invokes bank 0 upon execution of any byte 1/0 service request (@PUT, 
@GET, @CTL, as well as other byte 1/0 SVCs that use @PUT/@GET/@CTL). 
This ensures that any filter or driver attached to the device in question will be 
available. If a RAM bank other than 0 was resident, it is restored upon return 
from the device handler. This ensures that device 1/0 is never impacted by bank 
switching. 

TRSDOS also requires that all interrupt tasks reside in bank 0 or low memory 
(X'0000' through X'7FFF'). The Interrupt task processor always enables bank 0 
and restores whatever bank was previously resident. An interrupt task may per
form a bank transfer from 0 to another bank provided the necessary linkage 
and stack area is used. This is discussed in more detail later. 

All bank transfer requests must be performed using the @BANK SVC. This 
SVC provides four functions, three of which are interrogatory and one of which 
performs the actual bank switching. 

As mentioned previously, the contents of banks other than 0 are managed by 
the application, not by TRSD0S. Therefore, the application needs a way of find
ing out if any given bank is available. For example, if an application wants to 
reserve use of bank 1, it must first check to see if bank 1 is free to use. This is 
done by using function 2 as follows: 

LO C,1 ISPecifY bank 1 
LO B,2 !Check BUR if bank in use 
LO A,@BANK !Set @BANK SVC (102) 
RST 28H 
JR NZ,INUSE INZ if bank already in use 

Note that the return condition (NZ or Z) shows whether or not you can use the 
specified bank (it may not even be installed). 

If the specified bank is available, you then need to reserve it. Do this by using 
function 3 as follows: 

LO 
LO 

C,1 
B,3 

Software 37 

iSPecitv bank 1 
;set BUR to show "in use" 



LO 
RST 
JR 

A,@BANK 
28H 
NZ,ERROR 

!Set @BANK SVC (102) 

You must check for an error by examining the Z flag. In general (discounting a 
system error), an NZ condition returned means that the specified bank is 
already in use. If you had performed a function 2 (testing to see if the bank was 
available) and got a not-in-use indication, but got an NZ condition on function 
3, then the @BANK SVC routine has been altered and is probably unusable. 

When an application no longer requires a memory bank, it can return the bank 
to a "free'' state by using function 1 as follows: 

LO C,1 ISPecifv bank 1 
LO B,1 !Set BUR to show free 
LO A,@BANK !Set @BANK SVC (102) 
RST 28H 

No error condition is checked, as none is returned by TRSDOS. If you should 
mistakenly use function 1 with a bank that is nonexistent, an error is returned if 
you try to invoke the nonexistent bank. 

To find out which bank is resident at any time, use function 4 as follows: 

LO 6,4 !Which bank is resident? 
LO A,@BANK !Set @BANK SVC (102) 
RST 28H 

The current bank number is returned in register A. 

To exchange the current bank with the specified bank, use function 0. Since a 
memory transfer takes place in the address range X'8000' through X'FFFF; 
the transfer cannot proceed correctly if the stack pointer (SP) contains a value 
that places the stack in that range. @BANK inhibits function 0 and returns an 
SVC error if the stack pointer violates this condition. 

A bank can be used purely as a data storage buffer. The application's routini!s 
for invoking and indexing the bank switching probably reside in the user range 
X'3000' through X'7FFF.' As an example, the following code invokes a previ
ously tested and reserved bank (via functions 2 and 3), accesses the buffer, 
and then restores the previous bank: 

LO C,1 ISPecifv bank 1 
LO B,0 IBrinf UP bank 
LO A,@BANK !Set @BANK SVC 1102) 
RST 28H 
JR NZ,ERROR !Error trap 
PUSH BC !Save old bank data 

vour code to acc~ss the buffer refion 

POP 
LO 
RST 
JR 

BC 
A,@BANK 
28H 
NZ,ERROR 

!Recover old bank data 
!Set @BANK SVC 1102) 

;Error traP 

Note that the @BANK function 0 conveniently returns a zero in register B to 
effect a function 0 later, as well as provides the old bank number in register C. 
This means that you only have to save register pair BC, pop it when you want 
to restore the previous bank, and then issue the @BANK SVC. 

Suppose you want to transfer to another bank from a routine that is executing 
in high memory. (Recall that the only limitation is that the stack must not be in 
high memory.) The @BANK SVC function 0 provides a technique for automat
ically transferring to an address in the new bank. This technique is called the 
transfer function. It relies on the assumption that since you are managing the 
entire 32K bank 1 or 2, your application should know exactly where it needs to 
transfer (that is, where the application originally placed the code to execute). 

Software 38 



• 

• 

The code to perform a bank transfer is similar to the above example. Register 
pair HL is loaded with the transfer address. Register C, which contains the num
ber of the bank to invoke, must have its high order bit (bit 7) set. After the spec
ified bank is enabled, control is passed to the transfer address that is in HL. 
Upon entry to your routine in the new bank (referred to here as "PROGB"), reg
ister HL will contain the old return address so that PROGB will know where to 
return transfer. Register C will also contain the old bank number with bit 7 set 
and register B will contain a zero. This register set-up provides for an easy 
return to the routine in the old bank that invoked the bank transfer. An illustra
tion of the transfer code follows: 

LD C,1 ;specify bank 1 
LD B ,Ill ;Brinf UP bank Ill 
LD HL , ( TRAADR) ;set the transfer 

;address 
SET 7,C ;and denote a 

;transfer 
LD A,@BANK ;set @BANK SVC ( 11112 > 
RST 28H 

RETADR JR NZ,ERROR 

Control is returned to "RETADR" under either of two conditions. If there was an 
error in executing the bank transfer (for example, if an invalid bank number was 
specified or the stack pointer is in high memory), the returned condition is NZ. 
If the transfer took place and PROGB transferred back, the returned condition 
is Z. Thus, the Z flag shows whether or not there was a problem with the 
transfer. 

If PROGB needs to provide a return code, it must be done by using register pair 
OE, IX, or IV, as registers AF, BC, and HL are used to perform the transfer. (Or, 
some other technique can be used, such as altering the return transfer address 
to a known error trapping routine.) 

PROGB should contain code that is similar to that shown earlier. For example, 
PROGB could be: 

PROGB PUSH BC ;save old bank data 
PUSH HL ;save the RET 

hddress 

Your PROGB routines 

POP HL ;Recover transfer 
;address 

POP BC ;Get bank transfer 
;data 

LD A ,11112 ;set @BANK SVC 
RST 28H 
JR NZ,ERROR ; Error traP 

PROGB saves the bank data (register BC). Don't forget that a transfer was 
effected and register C has bit 7 already set when PROGB is entered. PROGB 
also saves the address it needs to transfer back (which is in HL). It then per
forms whatever routines it has been coded for, recovers the transfer data, and 
issues the bank transfer request. As explained earlier, an NZ return condition 
from the @BANK SVC indicates that the bank transfer was not performed. You 
should verify that your application has not violated the integrity of the stack 
where the transfer data was stored. 

Never place disk drivers, device drivers, device filters, or interrupt service rou
tines in banks other than bank 0. It is possible to segment one of the above 
modules and place segments in bank 1 or 2, provided the segment containing 
the primary entry is placed in bank 0. You can transfer between segments by 
using the bank transfer techniques discussed above. 

Software 39 



Device Driver and Filter Templates 

Device independence has its roots in "byte 110:• Byte 1/0 is any 1/0 passed 
through a device channel one byte at a time. 

Three primitive routines are available at the assembly language level for byte 
1/0. These byte 1/0 primitives can be used to build larger routines. The three 
primitives are the TRSD0S supervisor calls @GET, @PUT, and @CTL. @GET 
is used to input a byte from a device or file. @PUT is used to output a byte to a 
device or file. @CTL is used to communicate with the driver routine servicing 
the device or file. 

Other supervisor calls perform byte 1/0, such as @KBD (scan the keyboard and 
return the key code if a key is down), @DSP (display a character on the video 
screen), and @PRT (output a character to the line printer). These functions 
operate by first loading register pair DE with a pointer to a specific Device Con• 
trol Block (DCB) assigned for use by the device, then issuing a @GET or 
@PUT SVC for input or output requests. 

When TRSD0S passes control over to the device driver routine, the Z-80 flag 
conditions are unique for each different primitive. This enables the driver to 
establish which primitive was used to access the routine, so it can tum over the 
1/0 request to the proper driver or filter subroutine according to the type of 
request - input, output, or control. 

The following table shows the FLAG register conditions upon entry to a driver 
or filter: 

C,NZ =@GETprimitive 
Z,NC =@PUT primitive 
NZ.NC= @CTL primitive 

Register B contains the 1/0 direction code: 1 =@GET, 2 = @PUT, 4 = @CTL. 
Register C contains the character code that was passed in the @PUT or @CTL 
supervisor call. Register IX points to the TYPE byte (DCB+ 0) of the Device 
Control Block. Registers BC, DE, HL, and IX have been saved on the stack and 
are available for use. Register AF is not saved; if you want it preserved, your 
program must do so. 

Your driver must start with a standard front-end header (see "Memory 
Header"): 

BEGIN JR START ;co to actual code 
;be!tinnins 

DEFW MOOEND-1 ;Last bYte used by 
;module 

DEFB 7 ;LenHh of name 
OEFM 'MODNAME' ;Name 

MODDCB DEFW $-$ iOCB Pt r • for this 
;module 

OEFW 0 IRese rved by TRSOOS 

At the start of the actual module code, test the condition of the F register flags 
for @GET, @PUT, and @CTL: 

START 
; 

EQU 
Actual 
JR 
JR 
• 

$ 
module code 
C,WASGET 
Z,WASPUT 

start 
;Go if @GET request 
;Go if @PUT request 
IWas @CTL request 

At the label S,TART, a test is made on the carry flag. If the carry was set, then 
the disk primitive must have been an input request (@GET). An input request 
could be directed to a part of the driver which only handles input from the 
device. 

Software 40 

• 



• 

• 

If the request was not from the @GET primitive, the carry will not be set. The 
next test checks to see if the zero flag is set. The zero condition is preset when 
a @PUT primitive was the initial request. The jump to WASPUT can go to a part 
of the driver that deals specifically with output to the device. 

If neither the zero nor carry flags are set, the routine falls through to the next 
instruction (not shown), which would begin the part of the driver that handles 
@CTL calls. For example, you may want to have an RS·232C driver handle a 
BREAK by issuing a @CTL call so that the RS-232C driver emits a true modem 
break, but a CONTROL C would @PUT a X'03: 

Some drivers are written to assume that @CTL requests are to be handled 
exactly like @PUT requests. This is entirely up to the author and the function of 
the driver. 

Note that when a device is routed to a disk file, TRSDOS ignores @CTL 
requests. That is, the @CTL codes are not written to the disk file. 

On @GET requests, the character input should be placed in the accumulator. 
On output requests (either @PUT or @CTL), the character is obtained from 
register C. It is important for drivers and filters to observe return codes. Specif• 
ically, if the request is @GET and no byte is available, the driver returns an NZ 
condition and the accumulator contains a zero (that is, OR 1 : LO A,0 : RET). If 
a byte is available, the byte is placed in the accumulator and the Z flag is set 
(that Is, LO A,CHAR : CPA : RET). If there is an input error, the error code is 
returned in the accumulator and the Zflag is reset (that is, LO A,ERRNUM: OR 
A: RET). On output requests, the accumulator will contain the byte output with 
the Z flag set if no error occurred. In the case of an output error, the accumulator 
must be loaded with the error code and the Z flag reset as shown above. 

A filter module is inserted between the DCB and driver routine (or between the 
DCB and the current filter when it is applied to a DCB already filtered). The 
insertion is performed by the TRSDOS FILTER command once the filter mod
ule is resident and attached to a phantom DCB. The usual linkage for a filter is 
to access the chained module by calling the @CHNIO supervisor call with spe
cific linkage data in registers IX and BC. Register IX is loaded with the filter's 
DCB pointer obtained from the memory header MODDCB pointer. Register B 
must contain the 1/0 direction code (1 =@GET, 2=@PUT, 4=@CTL). This 
code is already in register B when the filter is entered. You can either keep reg
ister B undisturbed or load it with the proper direction code. Also, output 
requests expect the output byte to be in register C. 

The DCB pointer obtained from MODDCB is passed in register DE by the SET 
command and is loaded into MODDCB by your filter initialization routine. The 
initialization routine needs to relocate the filter to high memory and attach itself 
to the DCB assigned by the SET command. If the initialization front end had 
transferred the DCB pointer from DE to IX, then the following code could be 
used to establish the TYPE by1e and vector for the filter: 

LO (IX) ,47H llnit DCB tYPe to 
LD (IX+1l ,E !FILTER, G/P/C I/0, 
LD (IX+Z> ,D Ir, stuff vector 

A filter module can operate on input, output, control, or any combination based 
on the author's design. The memory header provides a region for user data 
storage conveniently indexed by the module. 

An illustration of a filter follows. The purpose of this filter is to add a linefeed on 
output whenever a carriage return is to be sent. Although the filter requires no 
data storage, the technique for accessing data storage is shown . 

Software 41 



BEGIN 

MOOOCB 

; 
CR 
LF 
DATA$ 
DATAl 

DATA2 

; 
START 

I 
I 
; 
; 
; 
; 
FLTPUT 

RX01 

I 
GOTPUT 
RX02 

RX03 

FLTEND 

RELTAB 
TABLEN 

START 
FLTEN0-1 
6 
'SAMPLE' 
0 
0 

!Branch to start 
!Last byte used 
!Name lennh 
;NaMe 
!Li nK to DCB 
!Reserved 

JR 
DEFlol 
DEFB 
DEFM 
DEFW 
DEFW 
Data 
EQU 
EQU 
EQU 
EQU 
DEFB 
EQU 
OEFB 

stora!e area for Your filter 
00H 
0AH 
$ 

$-DATA$ 
0 !Data storase 
$-DATA$ 
0 !Data storase 

Start of filter 
JR Z,GOTPUT !Go if @PUT 
@GET and @CTL re~uests are chained to 
the next module attached to the device, 
This is accomplished by fallins throu!h 
to the @CHNIO call, Note that the sample 
filter does not affect the B resister, 
so the filter does not have to load it 
with the direction code, 
PUSH IX !Save Your data 

;pointer 
LO IX, <MODDCBl 
EQU $-2 
LO A,@CHNIO 
RST 2BH 
POP IX 
RET 
Filter code 
LO IX,PFOATAS 
EQU $-2 
LO A,C 

CP CR 
JR NZ,FLTPUT 
CALL FLTPUT 
EQU $-2 
RET NZ 
LO C,LF 
JR FLTPUT 
EQU $ 
Relocation table 

IGrab the DCB vector 
land chain to it 

;Base res'ister is 
lused to index data 
IGet character to 
;test 
IIf not CR, PUt it 

;else Put it 

;Back on error 
IAdd linefeed 

DEFW RX01,RX02,RX03 
EQU $-RELTAB/2 

The relocation table, RELTAB, would be used by the filter initialization relocation 
routine. 

@CTL Interfacing to Device Drivers 

This section discusses the @CTL functions supported by the system device 
drivers. To invoke a @CTL function, point register pair DE to the Device Control 
Block (DCB), load the function code into register C, and issue the @CTL super
visor call. You can locate the DCB address by either 1) using the @GTDCB 
SVC, or 2) using the @OPEN SVC to open a File Control Block containing the 
device specification and using the FCB address. See the @CTL supervisor call 
for a list of the function codes and their meanings. 

Soflware42 

• 



• 

• 

The @CTL functions are listed below for each driver. 

Keyboard Driver (resident driver assigned to *Kl) 

A function value of X'03' clears the type-ahead buffer. This serves the same 
purpose as repeated calls to @KBD until no character is available. 

A function value of X'FF' is reserved for system use. 

All other function values are treated as @GET requests. 

The module name assigned to this driver is "$Kl': 

Video Driver (resident driver assigned to *DO) 

All @CTL requests are treated as if they were @PUT requests. 

The module name assigned to this driver is "$DO': 

Printer Driver (resident driver assigned to *PR) 

The printer driver is transparent to all code values when requested by the 
@F'UT SVC. That means that all values from X'00' through X'FF' (0-255) can 
be sent to the printer. If the FORMS filter is attached to the *PR device, then 
various codes are trapped and used by the filter according to parameters spec
ified with the FORMS library command, as follows: 

X'0D' - Generates a c;arriage return and optionally a linefeed (ADOLF). 
Generates form feeds as required. 

X'0A' - Treated the same way as x·00: 
X'0C' - Generates form feeds (via repeated line feeds if soft form feed). 

(FFHARD = OFF) 
X'09' -Advances to next tab column. 
X'06' - Sets top-of-form by resetting the internal line counter to zero. 

Other character codes may be altered if the user translation option of the 
FORMS command (XLATE) is set. 

The printer driver accepts a function value of X'00' via the @CTL request to 
return the printer status. H the printer is available, the Z flag will be set and reg
ister A will contain X'30: H the Z flag is reset, register A will contain the four high
order bits of the parallel printer port (bits 4-7). 

The module name assigned to the printer driver is "$PR': The module name of 
the FORMS filter is "$FF': 

COM Driver (non-resident driver for the RS-232C) 

This driver handles the interfacing between the RS-232C hardware and byte 
1/0 (usually the *CL device). 

A @CTL function value of X'00' returns an image of the RS-232 status register 
in the accumulator. The Z flag will be set if the RS-232 is available for "sending" 
(that is, if the transmit holcting register is empty and the flag conditions match 
as specified by SETCOM). 

A function value of X'01' transmits a "modem break" until the next character is 
@PUT to the driver. 

A function value of X'02' re-initializes the UART to the values last established 
bySETCOM. 

A function value of X'04' enables or disables the WAKEUP feature. 

All other function values are ignored and the driver returns with register A con
taining a zero value and the Z flag set. 

The WAKEUP feature is useful for application software specializing in com
munications. The RS-232 hardware can generate a machine interrupt under 
any of three conditions: when the transmit holding register is empty, when a 
received character is available, or when an error condition has been detected 
(framing error, parity error, and so on). The COM driver makes use of the 

Software 43 



"received character available" interrupt to take control when a fully formed char
acter is in the holding register. The COM driver services the interrupt by reading 
the character and storing it in a one-character buffer. COM then normally 
returns from the interrupt. 

An application can request that, instead of returning, control be passed to the 
application for immediate attention. Note that this action would occur during 
interrupt handling, and any processing by the application must be kept to a min
imum before control is returned to COM via a RET instruction. 

H you use a @CTL function value of X'04; then register IY must contain the 
address of the handling routine in your application. Upon return from the @CTL 
request, register IY contains the address of the previous WAKEUP vector. This 
should be restored when your application is finished with the WAKEUP feature. 

When control is passed to your WAKEUP vector upon detection of a "receive 
character available" interrupt, certain information is immediately available. Reg
ister A contains an image of the UART status register. The Z flag is set if a valid 
character is actually available. The character, if any, is in the C register. 

Since system overhead takes a small amount of time in the @GET supervisor 
call, you may need to @GET the character via standard device interfacing. This 
ensures that any filtering or linking in the *CL device chain will be honored. If, 
on the other hand, your application is attempting to transfer data at a very high 
rate (9600 baud or higher), you may need to bypass the @GET SVC and use 
the character immediately available in the C register. Note that this procedure 
bypasses the normal device chain (device routing and linking). 

The module name of the COM driver is "$Ct.:: 

Software44 

• 

Q 

• 



• 

• 

8/Using the Supervisor Calls 

caning Procedure 

Supervisor Calls (SVCs) are operating system routines that are available to 
assembly language programs. These routines alter certain system functions 
and conditions, provide file access, and perform various computations. They 
also perform 1/0 to the keyboard, video display, and printer . 

Each SVC has a number which you specify to invoke it. These numbers range 
from 0 to 104. 

In addition, under Version 6.2, you can write your own operating system rou
tines using the numbers 124 through 127 to install your own SVC's. See Ap· 
pendix E, "Programmable SVCs" for more information. 

To call a TRSDOS SVC: 

1. Load the SVC rwmber for the desired SVC into register A. Also load any 
other registers which are needed by the SVC, as detailed under Supervisor 
Calls. 

2. Execute a RST 28H instruction. 

Note: If the SVC number supplied in register A is invalid, the system prints the 
message "System Error xx•: where xx is usually 2B. It then returns you to 
TRSDOS Ready (not to the program that made the invalid SVC call). 

The alternate register set (AF; BC; DE; HI.:) is not used by the operating system. 

Program Entry and Return Conditions 
When a program executed from the @CMNDI SVC is entered, the system 
return address is placed on the top of the stack. Register HL will point to the first 
non-blank character following the command name. Register BC will point to the 
first byte of the command line buffer. 

Three methods of return from a program back to the system are available: the 
@ABORT SVC, the @EXIT SVC, and the RET instruction. For application pro
grams and utilities, the normal return method is the@EXIT SVC. If no error con
dition is to be passed back, the HL register pair must contain a zero value. Any 
non-zero value in HL causes an active JCL to abort. 

The @ABORT SVC can be used as an error return back to the system; it auto
matically aborts any active JCL processing. This is done by loading the value 
X'FFFP into the HL register pair and internally executing an @EXIT SVC. 

If stack integrity is maintained, a RET instruction can be used since the system 
return address is put on the stack by @CMNDI. This allows a return if the pro
gram was called with @CMNDR. 

Most of the SVCs in TRSDOS Version 6 set the Z flag when the operation spec
ified was successful. When an operation fails or encounters an error, the Z flag 
is reset (also known as NZ flag set) and a TRSDOS error code is placed in the 
A register. The remaining SVCs use the ZINZ flag in differing ways, so you 
should refer to the description of the SVCs you are using to determine the exit 
conditions. 

Sollware45 



Supervisor cans 
The TRSDOS Supervisor Calls are: 
Keyboard SVCs Byte 1/0 SVCs 

@CKBRKC @CTL 
@KBD @GET 
@KEY @PUT 
@KEVIN 

File Control SVCS 
Printer and Video SVCs 

@CLOSE 
@CLS @FEXT 
@DSP @FNAME 
@DSPLY @FSPEC 
@LOGER @INIT 
@LOGOT @REMOV 
@MSG @OPEN 
@PRT @RENAM 
@PRINT 

Disk FIie Handler SVCS @VDCTL 

DlskSVCs @BKSP 
@CKEOF 

@DCINIT @LOC 
@DCRES @LOF 
@DCSTAT @PEOF 
@RDSEC @POSN 
@RDSSC @READ 
@RSLCT @REW 
@ASTOR @RREAD 
@SEEK @AWAIT 
@SLCT @SEEKSC 
@STEPI @SKIP 

'-@VRSEC @VER 
@WRSEC @WEOF 
@WRSSC @WRITE 
@WRTRK TRSDOS Task Control SVCS 

System Control SVCs @ADTSK 
@CKTSK 

@ABORT @KLTSK 
@BREAK @RMTSK 
@CMNDI @RPTSK 
@CMNDR 
@EXIT 
@FLAGS 
@HIGH$ 
@IPL 
@LOAD 
@RUN 

Special Purpose Disk SVCs Special Overlay SVCs 

@DIRRD @CKDRV 
@DIRWR @DEBUG 
@GTDCT @DODIR 
@HOFMT @ERROR 
@RDHDR @PARAM 
@RDTRK @RAMDIR 

• 
Software 46 



• 

I 

Miscellaneous SVCS 

@BANK 
@DATE 
@DECHEX 
@DIVS 
@DIV16 
@HEXDEC 
@HEXB 
@HEX16 
@MULB 
@MUL16 
@PAUSE 
@SOUND 
@TIME 
@WHERE 

Special Purpose SVCs 

@CHNIO 
@GTDCB 
@GTMOD 

See the pages that follow for a detailed description of each supervisor call. 

Software 47 



@ABORT 
Abort Program 

SVC Number 21 

Loads HL with an X'FFFF' error code and exits through the @EXIT supervisor 
call. Any active JCL processing is aborted. 

Entry Conditions: 

A=21 (X'15') 

General: 

This SVC does not return. 

Example: 

See the example for @EXIT in Sample Program B, lines 206-207 . 

Software 48 

• 



• 

• 

@ADTSK SVC Number 29 

Add an Interrupt Level Task 
Adds an interrupt level task to the real time clock task table. The task slot num
ber can be 0-11; however, some slots are already assigned to certain functions 
in TRSDOS. Slot assignments 0-7 are low priority tasks executing every 266.67 
milliseconds. Slots 8-10 are medium priority tasks executing every 33.33 milli
seconds. Slot 11 is a high priority task, executing every 16.66 milliseconds High 
Speed or 33.33 milliseconds Low Speed. The system uses task slots 3, 7, 9, 
and 10 for the ALIVE, TRACE, SPOOL, and TYPE-AHEAD functions, 
respectively. 

It is a good practice to remove an existing task (using the @RMTSK or 
@KLTSK SVC) before installing a new task in the same task slot. 

Entry Conditions: 
A =29(X'1D') 
DE= pointer to Task Control Block (TCB) 
C = task slot assignment (0-11) 

Exit Conditions: 

Success always. 
HL and AF are altered by this SVC. 

The Task Control Block, or TCB, is a 2-byte block of RAM which contains the 
address of the task driver entry point. If your task is prefixed with the memory 
header described earlier under "Device Access;· then the TCB can be stored in 
the memory header data storage area. If the task is not a driver or filter, the TCB 
can be stored in the memory header location MODDCB. Upon entry to your 
task routine, the IX register contains the TCB address. 

Example: 

See Sample Program F, lines 109-120 . 

Software49 



@BANK 
Memory Bank Use 

SVC Number 102 

Controls 32K memory bank operation. The top half of the main 64K block is 
bank 0, and the alternate 64K block is divided into banks 1 and 2. The system 
maintains two locations to perform bank management. These areas are known 
as "bank available RAM" (BAR) and "bank in use RAM" (BUR). 

If the Stack Pointer is not X'7FFE' or lower, the SVC aborts with an Error 43 only 
ifB=0. 

Entry Conditions: 
. A = 102 (X'66') 

B selects one of the following functions: 
if B = 0, the specified bank is selected and is made addressable. 
The 32K bank starts at X'8000' and ends at X'FFFP. 

C = bank number to be selected (0-2) 
If bit 7 is set, then execution will resume in the newly loaded 
bank at the address specified. 

HL = address to start execution in the new bank 
If B = 1, reset BUR and show the bank not in use. 

C= bank number to be selected (0-2) 
If B = 2, test BUR if bank is in use. 

C = bank number to be selected (0-2) 
If B = 3, set BUR to show bank in use. 

C = bank number to be selected (0-2) 
if B = 4, return number of bank currently selected. 

Exit Conditions: 

116=0: 
Success, Z flag set. 

C = the bank number that was replaced. If bit 7 was set in register 
C on entry, it is also set on exit. 

HL = SVC return address. By keeping the contents of C and HL, 
you can later return to the instruction following the first 
@BANK SVC. See "Interfacing RAM Banks 1 and 2" for more 
information. 

Failure, NZ flag set. Bank not present or parameter error. 
A = error number 

If B=1: 
Success, Z flag set. Bank available for use. 
Failure, NZ flag set. Bank not present. 

If B=2: 
Success always. 

If B=3: 

If Z flag is set, then the bank Is available for use. 
if NZ flag is set, then test register A: 

If A ,t, X'2B,' then the bank is either in use or it does not exist on 
your machine. Banks 1 and 2 produce this error on a 64K 
machine. 

If A= X'2B,' then an entry parameter is out of range. 

Success, Z flag set. Bank is now reserved for your use. 
Failure, NZ flag set. Test register A: 

If A # X'2B,' then the bank is already in use or does not exist. Banks 
1 and 2 produce this error on a 64K machine. 

If A= X'2B,' then an entry parameter is out of range. 

Software 50 

• 



HB=4: 
Success always. 

A= number of the bank which is cu"ently resident 

General: 
AF is altered for all functions. 
BC is altered if the SVC is successful. 

Example: 

• 
See the section "Interfacing RAM Banks 1 and 2:• 

• 
Software 51 



@BKSP SVC Number 61 

Backspace One Logical Record 
Performs a backspace of one logical record. 

Entry Conditions: 
A = 61 (X'3D') 
DE= pointer to FCB of the file to backspace 

Exit Conditions: 
If the Z flag is set or if A= X'1C' or X'1 o;then the operation was successful. 

The LOC pointer to the file was backspaced one record. Otherwise, 
A= error number. 
If A= X' 1 C' is returned, the file pointer is positioned at the end of the file. 
Any Appending operations would be performed here. 
If A= X'1 D' is returned, the file pointer is positioned beyond the end of 
the file. 

General: 
Only AF is altered by this SVC. 
If the LOC pointer was at record 0 when the call was executed, the results 

are indeterminate. 

Example: 
See the example for @LOC in Sample Program C, lines 305-311. 

Software 52 

• 



@BREAK 
Set Break Vector 

• 

• 

SVC Number 183 

Sets a user or system break vector. The BREAK vector is an abort mechanism; 
there is no return. 

The BREAK vector executes whenever the following conditions occur at the 
same time: 1) the Program Counter is greater than X'2400; 2) the BREAK key 
is pressed, and 3) a real time clock interrupt which executes 30 times per sec
ond occurs. 

After executing this SVC, you must reset bit 4 of $FLAG$. The BREAK flag in 
KFLAG$ (bit 0) requires the setting of SFLAG$ bit 4 and a delay of 0.1 to 0.5 
second to clear any other interrupts that may be pending. Then you can enter 
your BREAK key handler (in which the BREAK key bit in SFLAG$ is reset). See 
KFLAG$ and $FLAG$ in the section about the @FLAGS SVC for more 
information. 

Entry Conditions: 
A = 103 (X'67') 
HL = user break vector 
HL = 0 (sets system break vector) 

Exit Conditions: 
Success always. 
HL = existing break vector (if user break vector was set) 

Note: @EXIT and @CMNDI automatically restore BREAK to the system han
dler. @CMNDR does not do this . 

Software 53 



@CHNIO SVC Number 20 

Pass Control to Next Module in Device Chain 
Passes control to the next module in the device chain. 

Entry Conditions: 
A = 20 (X'14') 
IX= contents of DCB in the header block 
B = GET/PUT/CTL direction code (112/4) 
C = character (if output request) 

General: 
IX is not checked for validity. 

Example: 
See the section "Device Driver and Filter Templates:· 

Software 54 

• 



• 

• 

@CKBRKC SVC Number 106 

Check BREAK bit and clear it Version 6.2 only 
Checks to see if the BREAK key has been pressed. If a BREAK condition exists, 
@CKBRKC resets the break bit, Bit 0 of KFLAG$ . 

Entry Conditions: 

A= 106(X'6A') 

Exit Conditions: 

Success always. 
If Z flag is set. the break bit was not detected. If NZ flag is set. the 
break bit was detected and is cleared. If the BREAK key is being de
pressed, the SVC will not return until the key is released. 

General: 

Only AF is altered by this SVC . 

Software 55 



• 



@CKDRV 
Check Drive 

• 

• 

SVC Number 33 

Checks a drive reference to ensure that the drive is in the system and a 
TRSDOS Version 6 or LDOS 5.1.3 (Model 111 Hard Disk Operating System) for
matted disk is in place. 

Entry Conditions: 
A= 33 (X'21') 
C=logica/ drive number (0-7) 

Exit Conditions: 
Success always. 

If Z flag is set, the drive is ready. 
If CF is set, the disk is write protected. 

If NZ flag is set, the drive is not ready. The user may examine DCT + 0 
to see if the drive is disabled. 

Eumple: 
See Sample Program D, lines 35-55 . 

Software 57 



@CKEOF SVC Number 62 

Check for End-Of-File 
Checks for the end of file at the current logical record number. 

Entry Conditions: 
A = 62 (X'3E') 
DE = pointer to the FCB of the file to check 

Exit Conditions: 
Success always. 

General: 

If Z flag is set, LOC does not point at the end of file (LOC < LOF). 
If NZ flag is set, test A for error number: 

If A=X'1C: LOC points at the end of the file (LOC=LOF). 
If A= X'1 o; LOC points beyond the end of the file (LOC > LOF). 
If A* X'1 C' or X'1 o; then A= error number. 

Only AF is altered by this SVC. 

Example: 
See Sample Program C, lines 352-353. 

Software 58 

• 



• 

• 

Check if Task Slot in Use 
Checks to see if the specified task slot is in use. 

Entry Conditions: 
A=28 (X'1C') 
C = task slot to check (0-11) 

Exit Conditions: 
Success always. 

SVC Number 28 

If Z flag is set, the task slot is available for use. 
If NZ flag is set, the task slot is already in use. 

General: 
AF and HL are altered by this SVC. 

Example: 
See Sample Program F, lines 70-73 . 

Software 59 



@CLOSE SVC Number 60 

Close a File or Device 
Terminates output to a file or device. Any unsaved data in the buffer area is 
saved to disk and the directory is updated. All files that have been written to 
must be closed, as well as all files opened with UPDATE or higher access. 

If you remove a diskette containing an open file, any attempt to close the file 
results in the message: 

•• CLOSE FAULT** error message, <ENTER> to retry, <BREAK> to 
abort 

where error message is usually "Drive not ready" You may put the diskette 
back in the drive and: 

1. Press (E!flm) to close the file. 
2. Press !Mm) to abort the close. 

If you press !Mm), the NZ flag is set and Register A contains X'20', the error 
code for an Illegal drive number error. 

Entry Conditions: 
A = 60 (X'3C') 
DE= pointer to FCB or DCB to close 

Exit Conditions: 
Success, Z flag set. The file or device was closed. The filespec (excluding 

the password) or the devspec is returned to the FCB or DCB. 
Failure, NZ flag set. 

A= error number 

General: 
Only AF is altered by this SVC. 

Example: 
See Sample Program C, lines 360-368. 

Software 60 

• 



I 

@CLS SVC Number 105 

Clear Video Screen Version 6.2 only 

Clears the video screen by sending a Home Cursor (X'1C') and Clear to End of 
Frame (X'1 F') sequence to the video driver. 

Entry Conditions: 

A = 105(X'69') 

Exit Conditions: 

Success, Z flag is set. 
Failure, NZ is set. 

A = error number 

General: 

Only AF is altered by this SVC. 

Software 61 



I 

@CMNDI SVC Number 24 

Execute Command with Return to System 
Passes a command string to TRSDOS for execution. After execution is com
plete, control returns to TRSDOS Ready. If the command gets an error, it still 
returns to TRSDOS Ready. 

Entry Conditions: 
A =24 (X"18') 
HL = pointer to buffer containing command string terminated with X'0D' 

(up to 80 bytes, including the X'0D') 

General: 
This SVC does not return. 

Example: 
See Sample Program E, lines 43-58. 

Software 63 



@CMNDR SVC Number 25 

Execute Command 
Executes a command or program and returns to the calling program. The exe
cuted program should maintain the Stack Pointer and exit via a RET instruction. 
All TRSDOS library commands comply with this requirement. 

If bit 4 of CFLAG$ is set (see the @FLAGS SVC), then @CMNDR executes 
only system library commands. 

Entry Conditions: 
A = 25 (X'19') 
HL = pointer to buffer containing command string terminated with X'lbD' 

(up to 80 bytes, including the X'0D') 

Exit Conditions: 
Success always. 

HL = return code (See the section "Converting to TRSDOS Version 6" 
for information on return codes.) 

Registers AF, BC, DE, IX, and IV are altered by the command or pro
gram executed by this SVC. 

If the command invokes a user program which uses the alternate reg
isters, they are modified also. 

Example: 
See Sample Program E, lines 18-29. 

Software 64 

• 



@CTL SVCNumber5 

Output a Control Byte 
Outputs a control byte to a logical device. The DCB TYPE byte (DCB+ 0, Bit 2) 
must permit CTL operation. See the section "@CTL Interfacing to Device Driv
ers" for information on which of the functions listed below are supported by the 
system device drivers. 

Entry Conditions: 
A =5 (X'05') 
DE= pointer to DCB to control output 
C selects one of the following functions: 

If C = 0, the status of the specified device will be returned. 
If C = 1, the driver is requested to send a BREAK or force an interrupt. 
If C = 2, the initialization code of the driver is to be executed. 
If C = 3, all buffers in the driver are to be reset. This causes all pending 

1/0 to be cleared. 
If C = 4, the wakeup vector for an interrupt-driven driver is specified by 

the caller. 
IY = address to vector when leaving driver. If IY = 0, then 

the wakeup vector function is disabled. The RS-232C 
driver COM/DVR ($CL), is the only system driver that 
provides wakeup vectoring. 

If C = 8, the next character to be read will be returned. This allows data 
to be "previewed" before the actual @GET returns the character. 

Exit Conditions: 
lfC=0, 

Z flag set, device is ready 
NZ flag set, device is busy 

A= status image, if applicable 
Note: This is a hardware dependent image. 

lfC=1, 
Success, Z flag set. BREAK or interrupt generated. 
Failure, NZ flag set 

A= error number 
lfC=2, 

Success, Z flag set. Driver initialized. 
Failure, NZ flag set 

A= error number 
lfC=3, 

Success, Z flag set. Buffers cleared. 
Failure, NZ flag set. 

A= error number 
lfC=4, 

Success always. 
IY = previous vector address 

This function is ignored if the driver does not support wakeup 
vectoring. 

lfC=8, 
Success, Z flag set. Next character returned. 

A= next character in buffer 
Failure, NZ flag set. Test register A: 

If A= 0, no pending character is in buffer 
If A* 0, A contains error number. (TRSDOS driver returns Error 43.) 

Software 65 



General: 
BC, DE, HL, and IX are saved. 
Function codes 5 to 7, 9 to 31, and 255 are reserved for the system. Function codes 

32 to 254 are available for user definition. 
Entry and exit conditions for user-defined functions are up to the design of the user

supplied driver. 

Example: 
See the section "Device Driver and Filter Templates:• 

Software 66 

• 



@DATE 
Get Date 

I 

I 

SVC Number 18 

Returns today's date in display format (MM/00/YY). 

Entry Conditions: 
A = 18 (X'12') 
HL = pointer to B-byte buffer to receive date string 

Exit Conditions: 
Success always. 

HL = pointer to the end of the buffer supplied+ 1 
DE= pointer to start of DATE$ storage area in TRSDOS 
BC is altered by this SVC. 

Example: 
See Sample Program F, lines 252-253. 

Software 67 



@DCINIT 
Initialize the FDC 

SVC Number 42 

Issues a disk controller initialization command. The floppy disk driver treats this 
the same as @ASTOR (SVC 44). 

Entry Conditions: 
A= 42 (X'2A') 
C = logical drive number (0-7) 

Exit Conditions: 
Success, Z flag set. 
Failure, NZ flag set. 

A= error number 

Example: 
See the example for @CKDRV in Sample Program D, lines 38-39. 

Software 68 



@DCRES 
Reset the FDC 

I 

I 

SVC Number 43 

Issues a disk controller reset command. The floppy disk driver treats this the 
same as @ASTOR (SVC 44). 

Entry Conditions: 
A= 43 (X'2B') 
C=logical drive number (0-7) 

Exit Conditions: 
Success, Z flag set. 
Failure, NZ flag set. 

A= error number 

Example: 
See the example for @CKDRV in Sample Program D, lines 38-39. 

Software 69 



@DCSTAT SVC Number 48 

Test if Drive Assigned in DCT 
Tests to determine whether a drive is defined in the Drive Code Table (Den. 

Entry Conditions: 
A= 40 (X'28') 
C=logical drive number (0-7) 

Exit Conditions: 
Success always. 

General: 

If Z is set, the specified drive Is already defined in the OCT. 
If NZ is set, the specified drive is not defined in the OCT. 

Only AF is altered by this SVC. 

Example: 
See Sample Program D, lines 27-33. 

Software 70 

• 



@DEBUG 
EnterDEBUG 

• 

• 

SVC Number 27 

Forces the system to enter the DEBUG utility. Pressing (ID (Ellil!i) from the 
DEBUG monitor causes program execution to continue with the next instruc
tion. If you want to use the functions in the extended debugger when DEBUG 
is entered in this fashion, you must issue the DEBUG (E) command (optionally 
with the @CMNDR SVC) before this SVC is executed. 

Entry Conditions: 
A=27(X'1B') 

General: 
This SVC does not return unless (ID is entered in DEBUG. 

Example: 
See Sample Program A, lines 54-60 . 

Software 71 



@DECHEX SVC Number 96 

Convert Decimal ASCII to Binary 
Converts a decimal ASCII string to a 16-bit binary number. Overflow is not 
trapped. Conversion stops on the first out-of-range character. 

Entry Conditions: 
A = 96 (X'60') 
HL = pointer to decimal string 

Exit Conditions: 
Success always. 

BC = binary conversion of ASCII string 
HL = pointer to the terminating byte 
AF is altered by this SVC. 

Example: 
See Sample Program B, lines 88-95. 

Software72 

• 



@DIRRD SVC Number 87 

Directory Record Read 
Reads a directory sector that contains the directory entry for a specified Direc
tory Entry Code (DEC). The sector is placed in the system buffer and the reg
ister pair HL points to the first byte of the directory entry specified by the DEC. 

Entry Conditions: 
A=87 (X'57') 
B = Directory Entry Code of the file 
C=logical drive number (0-7) 

Exit Conditions: 
Success, Z flag set. 

HL = pointer to directory entry specified by register B 
Failure, NZ flag set. 

General: 

A = error number 
HL is altered. 

AF is always altered. 
If the drive does not contain a disk, this SVC may hang indefinitely waiting 

for formatted media to be placed in the drive. The programmer should 
perform a @CKDRV SVC before executing this call. 

If the Directory Entry Code is invalid, the SVC may not return or it may 
return with the Z flag set and HL pointing to a random address. Care 
should be taken to avoid using the wrong value for the DEC in this call. 

Example: 
See Sample Program C, lines 152-174. 

Software 73 



@DIRWR SVC Number 88 

Directory Record Write 
Writes the system buffer back to the disk directory sector that contains the 
directory entry of the specified DEC. 

Entry Conditions: 
A=88 (X'58') 
B = Directory Entry Code of the file 
C=logical drive number (0-7) 

Exit Conditions: 
Success, Z flag set. 

HL = pointer to directory entry specified by register B 
Failure, NZ flag set. 

General: 

A = error number 
HL is altered. 

AF is always altered. 
If the drive does not contain a disk, this SVC may hang indefinitely waiting 

for formatted media to be placed in the drive. The programmer should 
perform a @CKDRV SVC before executing this call. 

If the Directory Entry Code is invalid, the SVC may not return or it may 
return with the Z flag set and HL pointing to a random address. Care 
should be taken to avoid using the wrong value for the DEC in this call. 

Example: 
See the example for@DIRRD in Sample Program C, lines 152-174. 

Software 74 

0 



@DIVS 
8-Bit Divide 

Performs an 8-bit unsigned integer divide. 

Entry Conditions: 
A=93 (X'SD') 
E=dividend 
C=divisor 

Exit Conditions: 
Success always. 

A=quotient 
E = remainder 
No other registers are altered. 

Example: 
See Sample Program B, lines 61-64. 

Software 75 

SVC Number 93 



@DIV16 SVC Number 94 

16-Bit by 8-Bit Divide 
Performs a division of a 16-bit unsigned integer by an 8-bit unsigned integer. 

Entry Conditions: 
A = 94 (X'5E') 
HL = dividend 
C =divisor 

Exit Conditions: 
Success always. 

HL = quotient 
A = remainder 
No other registers are altered. 

Example: 
See Sample Program B, lines 105-109. 

Software 76 

0 



i 

., 

@DODIR SVC Number 34 
Do Directory Display/ Buffer 

Reads files from a disk directory or finds the free space on a disk. The directory 
information is either displayed on the screen (in five-across format) or sent to a 
buffer. The directory information buffer consists of 18 bytes per active, visible 
file: the first 16 bytes of the directory record, plus the ERN (ending record num
ber). An X'FF' marks the buffer end. 

Entry Conditions: 
A= 34 (X'22') 
C=logical drive number (0-7) 
B selects one of the following functions: 

If B = 0, the directory of the visible, non-system files on the disk in the 
specified drive is displayed on the screen. The filenames are dis
played in columns, 5 filenames per line. 

If B = 1, the directory is written to memory. 
HL = pointer to buffer to receive information 

If B = 2, a directory of the files on the specified drive is displayed for files 
that are visible, non-system, and match the extension partspec 
pointed to by HL. 
HL = partspec for the filename's extension 

This field must contain a valid 3-character extension, padded 
with dollar signs ($). For example, to display all visible, non
system files that have the letter 'C' as the first character of the 
extension, HL should point to the string "C$$': 

If B = 3, a directory of the files on the specified drive is written to the buffer 
that is specified by HL for files that match the extension partspec 
pointed to by HL. 
HL = pointer to the 3-byte partspec and to the buffer to receive the 

directory records ( see general notes) 
Keep in mind that the area pointed to by HL is shared. if you are 

using this buffer more than once, you have to re-create the 
partspec in the buffer before each call because the previous 
call will have erased the partspec by writing the directory 
records. 

if B = 4, the disk name, original free space, and current free space on the 
disk is read. 
HL = pointer to a 20-byte buffer to receive information 

Exit Conditions: 
Success, z flag set. 

If B = 1 or 3, the directory records have been stored. 
HL = pointer to the beginning of the buffer 

If B = 0 or 2, the filenames or matching filenames are displayed with 5 
filenames per line. 

If B = 4, the disk name and free space information are stored in the 
format: 

Bytes 0-7 = Disk name. Disk name is padded on the right 
with blanks (X'20'). 

Bytes 8-15 = Creation date (the date the disk was formatted 
or was the target disk in a mirror image 
backup). The date is in the format MM/DDNY. 

Bytes 16-17 = Total K originally available in binary LSB-MSB 
format. 

Bytes 18-19 = Free K available now in binary LSB-MSB 
format. 

HL = pointer to the beginning of the data area 
Failure, NZ flag set. 

A= error number 

Software 77 



General: 
AF is the only register altered by this SVC. 
The size of the buffer to receive directory records must be large enough to 

hold directory entries for the maximum number of files allowed on the 
drive and disk you specify. For example, if the drive is a hard disk, you 
must be able to store 256 directory entries, and each entry requires 18 
bytes of storage. For more information on calculating the amount of 
space needed for this buffer, see the tables under "Directory Records'.' 
They give the maximum number of entries allowed on a given type of 
disk. You must add 2 records to this value when B = 1 to store the direc
tory entry for DIR/SYS and BOOT/SYS. 

Example: 
See Sample Program E, lines 32-40. 

Software 78 

• 

G 



@DSP 
Display Character 

SVC Number2 

Outputs a byte to the video display. The byte is displayed at the current cursor 
position. 

Entry Conditions: 
A=2 (X'02') 
C = byte to display 

Exit Conditions: 
Success, Z flag set. 

A= byte displayed 
Failure, NZ flag set. 

A= error number 

General: 
DE is altered by this SVC. 

Example: 
See Sample Program C, lines 219-221. 

Software 79 



@DSPLY SVC Number 10 

Display Message Line 
Displays a message line, starting at the current cursor position. The line must 
be terminated with either a carriage return (X'0D') or an ETX (X'03'). If an ETX 
terminates the line, the cursor is positioned immediately after the last character 
displayed. 

Entry Conditions: 
A = 10 (X'0A') 
HL = pointer to first byte of message 

Exit Conditions: 
Success, Z flag set. 
Failure, NZ flag set. 

A= error number 

General: 
AF and DE are altered by this SVC. 

Example: 
See Sample Program C, lines 35-37. 

Software 80 

• 

0 



@ERROR SVC Number 26 

Entry to Post an Error Message 
Provides an entry to post an error message. If bit 7 of register C is set, the error 
message is displayed and return is made to the calling program. If bit 6 is not 
set, the extended error message is displayed. Under versions prior to 6.2 the 
error display is in the following format: 

*** Errcod=Kxt Error messag-e strins *** 
<fi!esPec or devsPec> 

Referenced at X'dddd' 

Under Version 6.2 the error display is in the following format: 

**Error code= xx, Returns to}{' dddd' 
**Error 1t1essag'e str1n9' 
<filesPec, devsPec, or open FCB/OCB status> 
Last SI.IC= nnn, Returned to>{' rrrr" 

dddd is the return address of the <a,ERROR SVC in the application program. 
nnn is the last SVC executed before the <a, ERROR SVC request. 
rrrr is the address the previous SVC returned to in the application program. 

If bit 6 is set, then only the "Error message string" is displayed. This bit is 
ignored if bit 6 of SFLAG$ (the extended error message bit) is set. If bit 6 of 
CFLAG$ is set, then no error message is displayed. If bit 7 of CFLAG$ is set, 
then the "Error message string" is placed in a user buffer pointed to by register 
pair DE. See @FLAGS (SVC 101) for more information on SFLAG$ and 
CFLAG$. 

Entry Conditions: 
A=26 (X'1A') 
C = error number with bits 6 and 7 optionally set 

Exit Conditions: 
Success always. 

General: 
To avoid a looping condition that could result from the display device gen

erating an error, do not check for errors after returning from @ERROR. 
If you do not set bit 6 of register C, then you should execute this SVC only 

after an error has actually occurred. 

Example: 
See Sample Program C, lines 379-389. 

Software 81 



@EXIT 
Exit to TRSDOS 

SVC Number 22 

This is the normal program exit and return to TRSDOS. An error exit can be 
done by placing a non-zero value in HL. Values 1 to 62 indicate a primary error 
as described in TRSDOS Error Codes (Appendix A). (A non-zero value in HL 
causes an active JCL to abort.) 

Entry Conditions: 
A = 22 (X'16') 
HL=Retum Code 

If HL = 0, then no error on exit. 
If HL ~ 0, then the @ABORT SVC returns X'FFFF' in HL automatically. 

General: 
This SVC does not return. 

Example: 
See Sample Program B, lines 206-207. 

Software 82 

• 

0 

• 



j 

., 

@FEXT SVC Number 79 

Set Up Default File Extension 
Inserts a default file extension into the File Control Block if the file specification 
entered contains no extension. @FEXT must be done before the file is opened. 

Entry Conditions: 
A = 79 (X' 4F') 
DE=pointerto FCB 
HL=pointer to default extension (3 characters; alphabetic characters 

must be upper case and first character must be a letter) 

Exit Conditions: 
Success always. 

AF and BC are altered by this SVC. 
If the default extension is used, HL is also altered. 

Example: 
See Sample Program C, lines 111-132 . 

Software 83 



@FLAGS SVC Number 101 

Point IV to System Flag Table 
Points the IY register to the base of the system flag table. The status flags listed 
below can be referenced off IY. You can alter those bits marked with an asterisk 
(•). Bits without an asterisk are indicators of current conditions, or are unused 
or reserved. 

Note: You may wish to save KFLAG$ and SFLAG$ if you intend to modify them 
in your program, and restore them on exit. 

Entry Conditions: 
A= 101 (X'65') 

Exit Conditions: 
Success always. 
IY = pointer to the following system information: 
IY - 1 Contains the overlay request number of the last system module 

resident in the system overlay region. 
IY + 0 = AFLAG$ (allocation flag under Version 6.2 only) 

IY + 2 = CFLAG$ 

Contains the starting cylinder number to be used when 
searching for free space on a diskette. It is normally 1. 
If the starting cylinder number is larger than the number 
of cylinders for a particular drive, 1 is used for that drive. 

• bit 7 - If set, then @,ERROR will transfer the ""Error message 
string" to your buffer instead of displaying it. The mes
sage is terminated with X'0D .' 

• bit 6 - If set, do not display system error messages 0-62. See 
@ERROR (SVC 26) for more information. 

• bit 5 - If set, sysgen is not allowed. 
• bit 4 - If set, then @CMNDR will execute only system library 

commands. 
bit 3 - If set, @RUN is requested from either the SET or 

SYSTEM (DRIVER=) commands. 
bit 2 - If set, @KEYIN is executing due to a request from 

SYS1. 
bit 1 - If set, @CMNDR is executing. This bit is reset by 

@EXIT and @CMNDI. 
• bit 0 - If set, HIGH$ cannot be changed using @HIGH$ 

(SVC 100). This bit is reset by @EXIT and @CMNDI. 
IY + 3 = DFLAG$ (device flag) 

• bit 7 - "1" if GRAPHIC printer capability desired on screen 
print (ICONTROLI CD causes screen print. See the SYS
TEM (GRAPHIC) command under "Technical Infor
mation on TRSDOS Commands and Utilities:') 

bit 6 - "1" if KSM module is resident 
bit 5 - Currently unused 
bit 4 - "1" if MemDisk active 
bit 3 - Reserved 
bit 2 - "1" if Disk Verify is enabled 

• bit 1 - '"1" if TYPE-AHEAD is active 
bit 0 - "1" if SPOOL is active 

IY + 4 = EFLAG$ (ECI flag under Version 6.2 only) 
Indicates the presence of an ECI program. If any of the 
bits are set, an ECI is used, rather than the SYS1 inter
preter. The ECI program may use these bits as necce
sary. However, at least one bit must be set or the ECI is 
not executed. 

Software 84 



J 

• 

IY + 5 = FEMSK$ (mask for port 0FEH) 
IY + 8 = IFLAG$ (international flag) 

• bit 7 - If "1;' 7-bit printer filter is active 
If "o;· normal 8-bit filters are present 

• bit 6 - If "1;· international character translation will be per-
formed by printer driver 
If "o;· characters received by printer driver will be sent 
to the printer unchanged 

bit 5 - Reserved for future languages 
bit 4 - Reserved for future languages 
bit 3 - Reserved for future languages 
bit 2 - Reserved for future languages 
bit 1 - If "1 ;· German version of TRSDOS is present 
bit 0 - If "1;-· French version of TRSDOS is present 
If bits 5-0 are all zero, then USA version of TRSDOS is present. 

IY + 10 = KFLAG$ (keyboard flag) 
bit 7 - "1" if a character is present in the type-ahead buffer 
bit 6 - Currently unused 

• bit 5 - "1" if CAPS lock is set 
bit 4 - Currently unused 
bit 3 - Currently unused 

• bit 2 - "1" if (Em!ll has been pressed 
• bit 1 - "1" if~@ has been pressed (PAUSE) 
• bit 0 - "1" if IBREAKI has been pressed 

Note: To use bits 0-2, you must first reset them and then test to 
see if they become set. 

IY + 12 = MODOUT (image of port 0ECH) 
IY + 13= NFLAG$ (network flag under Version 6.2) 

bit 7 - Reserved for system use. 
bit 6 - If set, the application program is in the task processor. 

Programmers must not modify this bit. 
bit 5 - Reserved for system use. 
bit 4 - Reserved for system use. 
bit 3 - Reserved for system use. 
bit 2 - Reserved for system use. 
bit 1 - Reserved for system use. 

• bit O - If set, the "file open bit" is written to the directory. 
IY + 14=0PREG$ (memory management & video control image) 
IY + 17 = A FLAG$ (retry flag under Version 6.2 only) 

Indicates the number of retrys for the floppy disk driver. 
This should be an even number larger than two. 

IY + 18 = SFLAG$ (system flag) 
bit 7 - "1" if DEBUG is to be turned on 

• bit 6 - "1" if extended error messages desired (see 

bit5 
• bit 4 

bit3 

• bit 2 
• bit 1 
• bit 0 

@ERROR for message format); overrides the setting 
of bit 6 of register C on @ERROR (SVC 26) and 
should be used only when testing 

- "1" if DO commands are being executed 
- "1" if BREAK disabled 
- "1" if the hardware is running at 4 mhz (SYSTEM 

(FAST)). If "0;' the hardware is running at 2 mhz (SYS
TEM (SLOW)). 

- "1" if LOAD called from RUN 
- "1" if running an EXECute only file 
- "1" specifies no check for matching LAL on file open 

and do not set file open bit in directory. This bit should 
be set just before executing an @OPEN (SVC 59) if 
you want to force the opened file to be READ only dur
ing current 1/0 operations. As soon as either call is 
executed, $FLAG$ bit 0 is reset. If you want to disable 
LAL checking on another file, you must set SFLAG$ 
bit 0 again . 

Software 85 



IY + 19 = TFLAG$ (type flag under Version 6.2 only) 
Identifies the Radio Shack hardware model. TFLAG$ 
allows programs to be aware of the hardware environ
ment and the character sets available for the display. 
Current assignments are: 

2 indicates Model II 
4 indicates Model 4 
5 indicates Model 4P 

12 indicates Model 12 
IY +20= UFLAG$ (user flag under Version 6.2 only) 

May be set by application programs and is sysgened 
properly. 

IY + 21 = VFLAG$ 
bit 7 - Reserved for system use 

• bit 6 - "1" selects solid cursor, "0" selects blinking cursor 
bit 5 - Reserved for system use 

• bit 4 - "1" if real time clock is displayed on the screen 
bits 0-3 - Reserved for system use 

IY + 22 = WRINTMASK$ (mask for WRINTMASK port) 
IY + 26 = SVCTABPTR$ (pointer to the high order byte of the SVC table 

address; low order byte= 00) 
IY + 27 = Version ID byte (60H = TRSDOS version 6.0.x.x, 

61 H = TRSDOS version 6.1.x.x, etc.) 
IY -47 = Operating system release number. Provides a third and fourth 

character (12H = TRSDOS version x.x.1.2) 
IY+28 
to 
IY + 30 =@ICNFG vector 
IY+31 
to 
IY + 33 = @KITSK vector 

Software 86 

, 

C 



@FNAME 
Get Filename 

i 

SVC Number 80 

Gets the filename and extension from the directory using the specified Direc
tory Entry Code (DEC) for the file. 

Entry Conditions: 
A = 80 (X'50') 
DE= pointer to 15-byte buffer to receive filenamelextension:drive, fol

lowed by a X'l!JD' as a terminator 
B = DEC of desired file 
C = logical drive number of drive containing file (0-7) 

Exit Conditions: 
Success, Z flag set. 

HL = pointer to directory entry specified by register B 
Failure, NZ flag set. 

A = error number 
HL is altered. 

General: 
AF and BC are always altered. 
If the drive does not contain a disk, this SVC may hang indefinitely waiting 

for formatted media to be placed in the drive. The programmer should 
perform a @CKDRV SVC before executing this call. 

If the Directory Entry Code is invalid, the SVC may not return or it may 
return with the Z flag set and HL pointing to a random address. Care 
should be taken to avoid using the wrong value for the DEC in this call. 

Example: 
See Sample Program C, lines 274-286. 

Software 87 



C 

• 



j 

, . ., 

@FSPEC SVC Number 78 

Assign File or Device Specification 
Moves a file or device specification from an input buffer into a File Control Block 
(FCB). Conversion of lower case to upper case is made automatically. 

Entry Conditions: 
A = 78 (X'4E') 
HL = pointer to buffer containing filespec or devspec 
DE= pointer to 32-byte FCB or DCB 

Exit Conditions: 
Success always. 

General: 

If the Z flag is set, the file specification is valid. 
HL = pointer to terminating character 
DE=pointer to start of FCB 

If the NZ flag is set, a syntax error was found in the filespec. 
HL = pointer to invalid character 
DE= pointer to start of FCB 
A = invalid character 

AF and BC are altered. 

Example: 
See Sample Program C, lines 53-65. 

Software 89 



@GET SVCNumber3 

Get One Byte From Device or File 
Gets a byte from a logical device or a file. The DCB TYPE byte (DCB+ 0, Bit 0) 
must permit a GET operation for this call to be successful. 

Entry Conditions: 
A =3 (X'03') 
DE= pointer to DCB or FCB 

Exit Conditions: 
Success, Z flag set. 

A = character read from the device or file 
Failure, NZ flag set. Test register A: 

If A= 0, no character was available. 
If A~ 0, A contains error number. 

Example: 
See the section "Device Driver and Filter Templates:· 

Software 90 

• 

C 

• 



j 

., 

@GTDCB SVC Number 82 
Get Device Control Block Address 

Finds the location of a Device Control Block (DCB). If DE= 0 (no device name 
specified), HL returns the address of the first unused DCB found. 

Entry Conditions: 
A = 82 (X'52') 
DE= 2-character device name (E = first character, D = second character) 

Exit Conditions: 
Success, Z flag set. DCB was found. 

HL = pointer to start of DCB 
Failure, NZ flag set. No DCB was available. 

General: 

A = Error 8 (Device not available) 
HL is altered. 

AF is always altered by this SVC. 

Example: 
See the section "Device Driver and Filter Templates'.' 

Software 91 



@GTDCT SVC Number 81 
Get Drive Code Table Address 

Gets the address of the Drive Code Table for the requested drive. 

Entry Conditions: 
A= 81 (X'51') 
C=logical drive number (0-7) 

Exit Conditions: 
Success always. 

General: 

IV= pointer to the OCT entry for the specified drive 
AF is always altered by this SVC. 

If the drive number is out of range, the IV pointer will be invalid. This call 
does not return ZINZ to indicate if the drive number specified is valid 
(0-7) or enabled. 

Example: 
See the example for @DCSTAT in Sample Program D, lines 27-33. 

Software 92 

• 



., 

@GTMOD SVC Number 83 

Get Memory Module Address 
Locates a memory module, if the standard memory header is at the start of the 
module. The scanning starts with the system drivers in low memory, then 
moves to any high memory modules. If any routine is encountered that does not 
start with a proper header, scanning stops. 

Entry Conditions: 
A = 83 (X'53') 
DE= pointer to memory module name in upper case, terminated with any 

character in the range (/)(/)-31 

Exit Conditions: 
Success always. 

General: 

If the Z flag is set, the module was found. 
HL = pointer to first byte of memory header 
DE=pointer to first byte after module name 

If the NZ flag is set, the module was not found. 
HL is altered. 

AF is always altered by this SVC. 

Example: 
See Sample Program F, lines 144-154 . 

Software 93 



@HDFMT 
Hard Disk Format 

SVC Number 52 

Passes a format drive command to a hard disk driver. If the hard disk controller 
accepts it as a valid command, then it formats the entire disk drive. If the hard 
disk controller does not accept it, then an error is returned. Radio Shack hard
ware does not currently support @HDFMT. 

Entry Conditions: 
A= 52 (X'34') 
C=logical drive number (0-7) 

Exit Conditions: 
Success, Z flag set. 
Failure, NZ flag set. 

A= error number 

Software 94 

0 

• 



@HEXDEC SVC Number 97 
Convert Binary to Decimal ASCII 

Converts a binary number in HL to decimal ASCII. 

Entry Conditions: 
A = 97 (X'61') 
HL = number to convert 
DE= pointer to 5-character buffer to hold converted number 

Exit Conditions: 
Success always. 

DE = pointer to end of buffer+ 1 
AF, BC, and HL are altered by this SVC. 

Example: 
See Sample Program B, lines 73-76. 

Software 95 



@HEXS SVC Number 98 
Convert 1 Byte to Hex ASCII 

Converts a 1-byte number to hexadecimal ASCII. 

Entry Conditions: 
A = 98 (X'62') 
C = number to convert 
HL = pointer to a 2-character buffer to hold the converted number 

Exit Conditions: 
Success always. 

HL = pointer to the end of buffer+ 1 
Only AF is altered by this SVC. 

Example: 
See Sample Program B, lines 236-246. 

Software 96 

• 

0 



-

@HEX16 SVC Number 99 
Convert 2 Bytes to Hex ASCII 

Converts a 2-byte number to hexadecimal ASCII. 

Entry Conditions: 
A = 99 (X'63') 
DE=number to convert 
HL = pointer to 4-character buffer to hold converted number 

Exit Conditions: 
Success always. 

HL = pointer to end of buffer+ 1 
Only AF is altered by this SVC. 

Example: 
See Sample Program B, lines 248-258. 

Software 97 



@HIGH$ SVC Number 100 

Get or Alter HIGH$ or LOW$ 
Provides the means to read or alter the HIGH$ and LOW$ values. 

Note: HIGH$ must be greater than LOW$. LOW$ is reset to X'2FFF' by @EXIT, 
@ABORT, and @CMNDI. 

Entry Conditions: 
A= 100 (X'64') 
B selects HIGH$ or LOW$ 

If B = 0, SVC deals with HIGH$ 
If B cfo 0, SVC deals with LOW$ 

HL selects one of the following functions: 
If HL = 0, the current HIGH$ or LOW$ is returned 
If HLcfo0, then HIGH$ or LOW$ is set to the value in HL 

Exit Conditions: 
Success, Z flag set. 

HL = current HIGH$ or LOW$. If HL cfo 0 on entry, then HIGH$ or LOW$ 
is now set to that value. 

Failure, NZ flag set. 
A = error number 

General: 
If bit 0 of CFLAG$ is set (see @FLAGS), then HIGH$ cannot be changed 

with this call. The call returns error 43, "SVC parameter error.' 

Example: 
See Sample Program F, lines 75-86. 

Software 98 

• 

C 

• 



@INIT SVC Number 58 
Open or Initialize File 

Opens a file. If the file is not found, this SVC creates it according to the file 
specification. 

Entry Conditions: 
A = 58 (X'3A') 
HL = pointer to 256-byte disk /JO buffer 
DE= pointer to FCB containing the file specification 
B = Logical Record Length to be used while file is open 

Exit Conditions: 
Success, Z flag set. File was opened or created. 

The CF flag is set if a new file was created. 
Failure, NZ flag set. 

A= error number 

General: 
Only AF is altered by this SVC. 
The file open bit is set in the directory if the access level is UPDATE or 

greater. 

Example: 
See Sample Program C, lines 260-272. 

Software 99 



@IPL SVCNumber0 
Reboot the System 

Does a software reset. Floppy drive 0 must contain a system disk. @IPL uses 
the standard boot sequence, the same as for a hard reset (pressing the reset 
button). Memory locations X'41 E5'-X'4225' and X'4300'-X'43FF' are altered 
during the boot of the machine. 

Entry Conditions: 
A=0 (X'00') 

General: 
This SVC does not return. 

Software 100 

0 



_,I 

., 

@KBD SVCNumber8 
Scan Keyboard and Return 

Scans the keyboard and returns a character if a key is pressed. If no key is 
pressed, a zero value is returned. 

Entry Conditions: 
A=8 (X'08') 

Exit Conditions: 
Success, Z flag set. 

A= character pressed 
Failure, NZ set. 

If A= 0, no character was available. 
If A 4' 0, then A contains error number. 

General: 
DE is altered by this SVC. 

Example: 
See Sample Program C, lines 198-200. 

Software 101 



@KEY SVC Number1 

Scan *Kl Device, Wait for Character 
Scans the *Kl device and returns with a character. It does not return until a 
character is input to the device. 

Note: The system suspends execution of the program that issued the SVC until 
a character can be obtained. Background tasks will continue to run normally. 

Entry Conditions: 
A= 1 (X'01') 

Exit Conditions: 
Success, Z flag set. 

A= character entered 
Failure, NZ flag set. 

A= error number 

General: 
DE is altered by this SVC. 

Example: 
See Sample Program B, lines 202-203. 

Software 1 02 

C 



@KEVIN SVCNumber9 
Accept a Line of Input 

Accepts a line of input until terminated by either an CEmID or a (l!!W). Entries 
are displayed on the screen, starting at the current cursor position. Backspace, 
tab, and line delete are supported. If JCL is active, the line is fetched from the 
active JCL file. 

Entry Conditions: 
A =9 (X'09') 
HL = pointer to user line buffer of length B + 1 
B = maximum number of characters to input 
C =0 

Exit Conditions: 
Success, Z flag set. 

HL = pointer to start of buffer 
B = actual number of characters input 
CF is set if ~ terminated the input. 

Failure, NZ flag set. 
A = error number 

General: 
DE and C are altered by this SVC. 

Example: 
See Sample Program C, lines 39-47. 

Software 103 



@KLTSK SVC Number 32 
Remove Currently Executing Task 

When called by an executing task driver, removes the task assignment from the 
task table and returns to the foreground application that was interrupted . 

Entry Conditions: 
A = 32 (X'20') 

General: 
This SVC does not return. 

Example: 
See the example for@RMTSK in Sample Program F, lines 134-142. 

Software 104 

• 

C 

• 



@LOAD 
Load Program File 

., 

SVC Number 76 

Loads a program file. The file must be in load module format. 

Entry Conditions: 
A = 76 (X'4C') 
DE= pointer to FCB containing filespec of the file to load 

Exit Conditions: 
Success, Z flag set. 

HL = transfer address retrieved from file 
Failure, NZ flag set. 

A = error number 

Example: 
See Sample Program A, lines 50-56 . 

Software 1 05 



@LOC 
Calculate Current Logical Record Number 

Returns the current logical record number. 

Entry Conditions: 
A = 63 (X'3F') 
DE = pointer to the file's FCB 

Exit Conditions: 
Success, Z flag set. 

BC= logical record number 
Failure, NZ flag set. 

A =errornumber 

General: 
AF is altered by this SVC. 

Example: 
See Sample Program C, lines 305-311. 

Software 1 06 

SVC Number 63 

C 



j 

~--

@LOF SVC Number 64 
Calculate the EOF Logical Record Number 

Returns the EOF (End of File) logical record number. 

Entry Conditions: 
A = 64 (X' 40') 
DE= pointer to FCB for the file to check 

Exit Conditions: 
Success, Z flag set. 

BC= the EOF logical record number 
Failure, NZ flag set. 

A = error number 

General: 
Only AF is altered by this SVC. 

Example: 
See the example for @LOC in Sample Program C, lines 305-311. 

Software 107 



@LOGER SVC Number 11 
Issue Log Message 

Issues a log message to the Job Log. The message can be any character string 
terminating with a carriage return (X'0D'). 

Entry Conditions: 
A = 11 (X'0B') 
HL = pointer to first character in message line 

Exit Conditions: 
Success, Z flag set. 
Failure, NZ flag set. 

A= error number 

General: 
Only AF is altered by this SVC. 

Example: 
LO 
LO 

RST 
••• 

HL,TEXT ;Paint at Messa9'e to outPut 
A,@LOGER ;and output it to the Job 

; L D 9' 
28H ;call the @LOGER SVC 

TEXT: DEFM 'This is a messa!e for the Job Lo!' 
DEFB 00H ;Messa!e must be terminated 

;with an <ENTER>, 

Software 1 08 

• 

0 

• 



., 

@LOGOT SVC Number 12 
Display and Log Message 

Displays and logs a message. Performs the same function as @DSPLY fol
lowed by @LOGER. 

Entry Conditions: 
A = 12 (X'0C') 
HL = pointer to first character in message line 

Exit Conditions: 
Success, Z flag set. 
Failure, NZ flag set. 

A= error number 

General: 
Only AF is altered by this SVC. 
To avoid a looping condition that could result from the display device gen

erating an error, no error checking should be done after returning from 
@LOGOT. 

Example: 

TEXT: 

LD 
LD 

RST 
••• 
DEFM 
DEFM 
DEFB 

HL,TEXT IPoint at messa1e to output 
A,@LOGOT land outPut it to the Job 

lloS AND the disPlaY 
28H ICall the @LOGOT SVC 

'This messase will be displayed both in' 
1 the Job Lof and on the disPlaY,' 
0DH iMust terminate text with an 

i<ENTER>, 

Software 109 



@MSG SVC Number 13 
Send Message to Device 

Sends a message line to any device or file. 

Entry Conditions: 
A = 13 (X'0D') 
DE= pointer to DCB or FCB of device or file to receive output 
HL = pointer to message line terminated with X'0D' or X'03' 

Exit Conditions: 
Success, Z flag set. 
Failure, NZ flag set. 

A= error number 

General: 
Only AF is altered by this SVC. 

Example: 
LO HL ,TEXT 
LO OE ,OCBP 

LO A ,@MSG 
RST 28H 

••• 

;Point at Messase to output 
;Point at the device control 
;blocK for our device 
;and write this text to it 
;call the @MSG SVC 

TEXT: OEFM 'O555-555<LOGIN USER>' Hext to write to 
;ihis device. In this case, 
;it is a dialins ModeM. 

OEFB 03H ;TerMinate the Messase 

Software 11 O 

C 



j 

., 

@MULS SVC Number 90 

8-Bit Multiplication 
Performs an 8-bit by 8-bit unsigned integer multiplication. The resultant product 
must fit into an 8-bit field. 

Entry Conditions: 
A=90 (X'5A') 
C = multiplicand 
E = multiplier 

Exit Conditions: 
Success always. 

A=product 
DE is altered by this SVC. 

Example: 
See Sample Program B, lines 150-153 . 

Software 111 



@MUL16 SVC Number 91 

16-Bit by 8-Bit Multiplication 
Performs an unsigned integer multiplication of a 16-bit multiplicand by an 8-bit 
multiplier. The resultant product is stored in a 3-byte register field. 

Entry Conditions: 
A = 91 (X'5B') 
HL = multiplicand 
C = multiplier 

Exit Conditions: 
Success always. 

HL = two high-order bytes of product 
A = low-order byte of product 
DE is altered by this SVC. 

Example: 
See Sample Program B, lines 183-187. 

Software 112 

• 

0 



j 

@OPEN SVC Number 59 
Open Existing File or Device 

Opens an existing file or device. 

Entry Conditions: 
A = 59 (X'3B') 
HL = pointer to 256-byte disk 1/0 buffer 
DE= pointer to FCB or DCB containing fi/espec or devspec 
B = logical record length for open file 

Exit Conditions: 
Success, Z flag set. 
Failure, NZ flag set. 

A= error number 

General: 
AF is altered by this SVC. 
The file open bit is set in the directory if the access level is UPDATE or 

greater. 

Example: 
See Sample Program C, lines 134-150. 

Software 113 



@PARAM SVC Number 17 

Parse Parameter String 
Parses an optional parameter string. Its primary function is to parse command 
parameters contained in a command line starting with a parenthesis. The 
acceptable parameter format is: 

PARM= X'nnnn' .... hexadecimal entry 
PARM= nnnnn .... decimal entry 
PARM= "string" ... alphanumeric entry 
PARM =flag .... ON, OFF, Y, N, YES, or NO 

Note: Entering a parameter with no equal sign or value is the same as 
using PARM= ON. Entering PARM= with no value is the same as 
using PARM= OFF. 

Entry Conditions: 
A =17(X'11') 
DE= pointer to beginning of your parameter table 
HL = pointer to command line to parse (the parameter string is enclosed 

within parentheses) 

Exit Conditions: 
Success always. 

General: 

If Z is set, either valid parameters or no parameters were found. 
If NZ is set, a bad parameter was found. 

NZ is not returned if parameter types other than those specified are 
entered. The application must check the validity of the response byte. 

The valid parameters are contained in a user table which must be in one of the 
following formats. (Parameter names must consist of alphanumeric charac
ters, the first of which is a letter.) 

For use with TRSDOS Version 6, use this format: 

The parameter table starts with a single byte x·a0: Each parameter is 
stored in a variable length field as described below. 

1) Type Byte (Type and length byte) 
Bit 7 - If set, accept numeric value 
Bit 6-11 set, accept flag parameter 
Bit 5-11 set, accept "string" value 
Bit 4-11 set, accept first character of name as abbreviation 
Bits 3-0 - Length of parameter name 

2) Actual Parameter Name 

3) Response byte (Type and length found) 
Bit 7 -Numeric value found 
Bit 6 - Flag parameter found 
Bit 5-String parameter found 
Bits 4-0- Length of parameter entered. If length is 0 and the 2-byte 

vector points to a quotation mark (X'22'), then the parameter 
was a null string. Otherwise, a length of 0 indicates that the 
parameter was longer than 31 characters. 

4) 2-byte address vector to receive the parsed parameter values. 

The 2-byte memory area pointed to by the address field of your table 
receives the value of PARM if PARM is non-string. If a string is entered, the 
2-byte memory area receives the address of the first byte of "string:· The 
entries ON, YES, and Y return a value of X'FFFF'; OFF, NO, and N return 
x·0000: If a parameter name is specified on the command line and is fol-

Software 114 

C 

• 



., 

lowed by an equal sign and no value, then X'0000' or NO is returned. If a 
parameter name is used on the command line without the equal sign, then 
a value of X'FFFF' or ON is assumed. For any allowed parameter that is 
completely omitted on the command line, the 2-byte area remains 
unchanged and the response byte is 0. 

The parameter table is terminated with a single byte x·00: 

For compatibility with LOOS 5.1.3, use this format: 

A 6-character "word" left justified and padded with blanks followed by a 2-
byte address to receive the parsed values. Repeat word and address for as 
many parameters as are necessary. You must place a byte of X'00' at the 
end of the table. 

Example: 

COMAND: 

PARM: 

RESP: 

VAL: 

LO 
LO 
LO 

RST 
JR 

LO 
AND 
JR 

LO 
OR 
JR 

JR 

••• 

HL,COMAND 
DE,PARM 
A,@PARAM 

28H 
NZ,ERROR 

A,<RESP) 
1114111H 
Z,BAD 

A, (VAL) 
A 
Z,OFF 

ON 

DEFS 8111 

DEFB 8111H 
DEFB 4111H+6 

DEFM 
DEFB 
OEFW 
DEFB 
DEFS 

'UPDATE' 
111 

VAL 
111 

2 

Software 115 

;Point at command buffer 
;Point at Parameter list 
;Parse the items on the 
;command line 
;call the @PARAM SVC 
;An error occurred (not 
iincluded here) 
;Get resPonse code 
;Test response flass 
;user specified somethins 
;like UPDATE=X'1234' or 
;UPDATE="HELLO" 
;Get 1st bYte of VAL ward 
nest the value 
;UPDATE=OFF or UPDATE=NO was 
;specified 
;UPDATE=ON or UPDATE=YES was 
;specified 

;Area where command is 
;stored 
;Table header code 
;4111 sa,s we want a flag 
;(YES/NO), 6 is length of 
;ihe Parameter name 
;Parameter name 
;Response area 
;vector ta VAL 
;End of Table code 
;Area to receive a parameter 
;value 



@PAUSE SVC Number 16 
Suspend Program Execution 

Suspends program execution for a specified period of time and goes into a 
"holding" state. The delay is at least 14.3 microseconds per count. 

Entry Conditions: 
A = 16 (X'10') 
BC= delay count 

Exit Conditions: 
Success always. 

Example: 
LD BC,3GA2H ;wait for about 200 milli-

;seconds. 14.3 usecs * 
113986 is approx, 200 
;rosecs 

LD A ,@PAUSE ;suspend execution 
RST 28H ;call th• @PAUSE SVC 

Software 116 

0 



) 

., 

@PEOF SVC Number 65 
Position to End Of File 

Positions an open file to the End Record Number (ERN). An end-of-file
encountered error (X'1C') is returned if the operation is successful. Your pro
gram may ignore this error. 

Entry Conditions: 
A = 65 (X'41') 
DE= pointer to FCB of the file to position 

Exit Conditions: 
NZ flag always set. 

General: 

If A= X'1 c; then success. 
If A 4' x· 1 c; then failure. 

A= error number 

AF is always altered by this SVC. 

Example: 
See the example for @LOC in Sample Program C, lines 305-311. 

Software 117 



@POSN 
Position File 

SVC Number 66 

Positions a file to a logical record. This is useful for positioning to records of a 
random access file. 

When the @POSN routine is used, Bit 6 of FCB + 1 is automatically set. This 
ensures that the EOF (End Of File) is updated when the file is closed only if the 
NAN (Next Record Number) exceeds the current ERN (End Record Number). 

Note that @POSN must be used for each write, even if two records are side by 
side. 

Entry Conditions: 
A = 66 (X'42') 
DE= pointer to FCB for the file to position 
BC= the logical record number 

Exit Conditions: 
If z flag is set or A=X'1C' or x·1O; then success. 

The file was positioned. 
Otherwise, failure. 

A= error number 

General: 
AF is always altered by this SVC. 

Example: 
See the example for @LOC in Sample Program C, lines 305-311. 

Software 118 

0 



J 

., 

@PRINT SVC Number 14 
Prints Message Line 

Outputs a message line to the printer. The line must be terminated with either a 
carriage return (X'0D') or an ETX (X'03'). 

Entry Conditions: 
A = 14 (X'0E') 
HL = pointer to message to be output 

Exit Conditions: 
Success, Z flag set. 
Failure, NZ flag set. 

A= error number 

General: 
AF and DE are altered by this SVC. 

Example: 
LD HL,TEXT ;Te><t to 

;printer 
be OUtPUt to 

LD A,@PRINT ;write this Messa!fe to 
;printer device 

RST 28H ;call the @PRINT SVC 
••• 

TEXT: DEFll IIJCH ;oo a TOP of ForM 
DEFM 'Report continued 

the 

the 

Pa9e 
DEFll 3 ;Terminate with a <ETX> or 

;an <ENTER> 

Software 119 



@PRT SVC Number6 

Send Character to Printer 
Outputs a byte to the line printer. 

Entry Conditions: 
A=6 (X'06') 
C = character to print 

Exit Conditions: 
Success, Z flag set. 
Failure, NZ flag set. 

A= error number 

General: 
AF and DE are altered by this SVC. 
If the line printer is attached but becomes unavailable (out of paper, out of 

ribbon, turned off, off-line, buffer full, etc.), the printer driver waits approx
imately ten seconds. If the printer is still not ready, a "Device not avail
able" error is returned. 

Example: 
LD A , ( PAGE) ;Get the Pase nuMber 
ADD At' 0' ;Make it ASCII 
LD C,A ;Put the value he re 
LD A,@PRT ;write this character to the 

;printer 
RST ZSH ;Call the @PRT SVC 
••• 

PAGE: DEF6 z ;start with Pa!te z 

Software 120 

• 



i 

@PUT SVCNumber4 
Write One Byte to Device or File 

Outputs a byte to a logical device or file. The DCB TYPE byte (DCB+ 0, Bit 1) 
must permit PUT operation. 

Entry Conditions: 
A =4 (X'04') 
DE= pointer to DCB or FCB of the output device 
C = byte to output 

Exit Conditions: 
Success, Z flag set. 
Failure, NZ flag set. 

A= error number 

General: 
AF is always altered by this SVC. 

Example: 
See the section "Device Driver and Filter Templates:· 

Software 121 



@RAMDIR SVC Number 35 
Get Directory Record or Free Space 

Reads the directory information of visible files from a disk directory, or gets the 
amount of free space on a disk. 

Entry Conditions: 
A = 35 (X'23') 
HL = pointer to RAM buffer to receive information 
B =logical drive number (0-7) 
C selects one of the following functions: 

If C = 0, get directory records of all visible files. 
If C = 255, get free space information. 
If C = 1-254, get a single directory record (see below). 

Exit Conditions: 
Success, Z flag set. 
Failure, NZ flag set. 

A= error number 

Each directory record requires 22 bytes of space in the buffer. If C = 0, one addi
tional byte is needed to mark the end of the buffer. 

For single directory records, the number in the C register should be one less 
than the desired directory record. For example, if C = 1, directory record 2 is 
fetched and put in the buffer. If a single record request is for an inactive record 
or an invisible file, the A register returns an error code 25 (File access denied). 

The directory information is placed in the buffer as follows: 

Byte Contents 
00-14 filename/ext:d (left justified, padded with spaces) 
15 protection level, 0 to 6 
16 EOF offset byte 
17 logical record length, 0 to 255 
18-19 ERN of file 
20-21 file size in K (1024-byte blocks) 
22 LAST RECORD ONLY. Contains"+" to mark buffer end. 

If C = 255, HL should point to a 4-byte buffer. Upon return, the buffer contains: 

Bytes 00-01 Space in use in K, stored LSB, MSB 
Bytes 02-03 Space available in K, stored LSB, MSB 

Example: 
See the example for @DODIR in Sample Program E, lines 32-40. 

Software 122 

0 



) 

' ., 

@RDHDR SVC Number 48 
Read a Sector Header 

Reads the next ID header when supported by the controller driver. The floppy 
disk driver supplied treats this as a @RDSEC (SVC 49). 

Entry Conditions: 
A = 48 (X'30') 
HL = pointer to buffer to receive the data 
D = cylinder to read 
C = logical drive number 
E = sector to read 

Exit Conditions: 
Success, Z flag set. 
Failure, NZ flag set. 

A= error number 

Example: 
See the example for @RDSEC in Sample Program D, lines 63-66. 

Software 123 



@RDSEC 
Read Sector 

SVC Number 49 

Transfers a sector of data from the disk to your buffer. 

Entry Conditions: 
A = 49 (X'31') 
HL = pointer to the buffer to receive the sector 
D = cylinder to read 
E = sector to read 
C = logical drive number (0-7) 

Exit Conditions: 
Success, Z flag set. 
Failure, NZ flag set. 

A= error number 

General: 
Only AF is altered by this SVC 

Example: 
See Sample Program D, lines 63-66. 

Software 124 

0 

• 



@RDSSC SVC Number 85 

Read System Sector 
Reads the specified system (directory) sector. If the cylinder number in register 
D is not the directory cylinder, the value in D is changed to reflect the real direc
tory cylinder and the sector is then read. 

Entry Conditions: 
A = 85 (X'55') 
HL = pointer to the buffer to receive the sector 
D = cylinder to read 
E = sector to read 
C = logical drive number (0-7) 

Exit Conditions: 
Success, Z flag set. 
Failure, NZ flag set. 

A= error number 

General: 
Only AF is altered by this SVC. 

Example: 
See Sample Program D, lines 78-92. 

Software 125 



@RDTRK 
Read a Track 

SVC Number 51 

Reads an entire track when supported by the controller driver. The floppy disk 
driver supplied treats this as a @RDSEC (SVC 49) and does not do a track 
read. 

Entry Conditions: 
A = 51 (X'33') 
HL = pointer to buffer to receive the sector 
D = track to read 
C = logical drive number 
E = sector to read 

Exit Conditions: 
Success, z flag set. 
Failure, NZ flag set. 

A= error number 

General: 
AF is altered by the supplied floppy disk driver. 

Example: 
See the example for @RDSEC in Sample Program D, lines 63-66. 

Software 126 



@READ 
Read a Record 

i 

SVC Number 67 

Reads a logical record from a file. If the LAL defined at open time was 256 
(specified by 0), then the NAN sector is transferred to the buffer established at 
open time. For LAL between 1 and 255, the next logical record is placed into a 
user record buffer, UREC. The 3-byte NAN is updated after the read operation. 

Entry Conditions: 
A = 67 (X'43') 
DE= pointer to FCB for the file to read 
HL = pointer to user record buffer UREC (needed if LAL= 1-255; unused if 

LRL=256) 

Exit Conditions: 
Success, Z flag set. 
Failure, NZ flag set. 

A= error number 

Example: 
See Sample Program C, lines 300-304. 

Software 127 



@REMOV SVC Number 57 
Remove File or Device 

Removes a file or device. 

If a file is to be removed, the File Control Block must be in an open condition. 
When this SVC is performed, the file's directory is updated and the space occu
pied by the file is deallocated. 

If a device was specified, the device is closed. To remove a device, use the 
REMOVE library command. 

Entry Conditions: 
A = 57 (X'39') 
DE= pointer to FCB or DCB to remove 

Exit Conditions: 
Success, Z flag set. 
Failure, NZ flag set. 

A= error number 

Example: 
See Sample Program C, lines 223-231. 

Software 128 

G 



j 

,,...--

..,I 

., 

@RENAM SVC Number 56 
Rename File or Device 

Changes a file's filename and/or extension. 

Entry Conditions: 
A = 56 (X'38') 
DE=pointer to an FCB containing the file's current name 

This FCB must be in a closed state. 
HL = pointer to new filename string terminated with a X'0D' or X'03: This 

filespec must be in upper case and must be a valid filespec. You can 
convert the filespec to upper case and check its validity by using the 
@FSPEC SVC before using @RENAM. 

Exit Conditions: 
Success, Z flag set. 
Failure, NZ flag set. 

A= error number 

General: 
After the call is completed, the FCB pointed to by DE is altered. 
Only AF is altered by this SVC. 

Example: 
LD DE,FCB 

LD HL,NEW 

LD A,@RENAM 

RST 28H 
••• 

FCB: DEFS 32 

NEW: DEFM 'NEWNAME/TXT' 

DEFB 121DH 

Software 129 

;Point at a closed FCB 
;containing the old 
;filesPec 
;Point to the new filesPec 
;io use 
;change the name of the 
Hi le 
;call the @RENAM SVC 

;A File Control BlocK used 
;by the @RENAM SVC, In 
;this exaMPlet it is 
;assumed that an @FSPEC 
;svc has loaded a filesPec 
;into the FCB before the 
;@RENAM SVC is Performed, 
;The new filespec for the 
;file 
;TerMinate the filesPec 



@REW SVC Number 68 
Rewind File to Beginning 

Rewinds a file to its beginning and resets the 3-byte NRN to 0. The next record 
to be read or written sequentially is the first record of the file. 

Entry Conditions: 
A = 68 (X'44') 
DE= pointer to FCB for the file to rewind 

Exit Conditions: 
Success, Z flag set. File positioned to record number 0. 
Failure, NZ flag set. 

A= error number 

General: 
AF is always altered by this SVC. 

Example: 
See the example for @LOC in Sample Program C, lines 305·311. 

Software 130 

0 



• 

., 

@RMTSK SVC Number 30 
Remove Interrupt Level Task 

Removes an interrupt level task from the Task Control Block table. 

Entry Conditions: 
A= 30 (X'1 E') 
C=task slot assignment to remove (0-11) 

Exit Conditions: 
Success always. 
HL and DE are altered by this SVC. 

Example: 
See Sample Program F, lines 134-142 . 

Software 131 



@RPTSK SVC Number 31 
Replace Task Vector 

Exits the task process executing and replaces the currently executing task's 
vector address in the Task Control Block table with the address following the 
SVC instruction. Return is made to the foreground application that was 
interrupted. 

Entry Conditions: 
A= 31 (X'1 F') 

General: 
This SVC does not return. 

Example: 
LO A,RPTSK 

RST 28H 
NEWAOO: OEFW 0 

Software 132 

;RePlace this task with the 
;one located at the 
;followin~ address: 
;call the @RPTSK SVC 
;Address of the new task is 
;loaded here, This word 
;must be immediately after 
;the @RPTSK SVC, The label 
;NEWAOO is Present only to 
;allow the address to be 
;stored. 

0 



@RREAD 
Reread Sector 

., 

SVC Number 69 

Forces a reread of the current sector to occur before the next 1/0 request is per
formed. Its most probable use is in applications that reuse the disk 1/0 buffer for 
multiple files, to make sure that the buffer contains the proper file sector. This 
routine is valid only for byte 1/0 or blocked files. Do not use it when positioned 
at the start of a file. 

Entry Conditions: 
A = 69 (X'45') 
DE= pointer to FCB for the file to reread 

Exit Conditions: 
Success, Z flag set. 
Failure, NZ flag set. 

A= e"or number 

General: 
AF is always altered by this SVC. 

Example: 
LD DE,FCB ;Point to File Control BlocK 

;of the file that requires 
;ihe re-read 

LD A,@RREAD ;Before next I/0, reload 
;the current sector into 
;the system buffer for 
;this file 

RST 28H ;call the @RREAD SVC 

Software 133 



@RSLCT SVC Number 47 

Test for Drive Busy 
Performs a test of the last selected drive to see if it is in a busy state. If busy, it 
is re-selected until it is no longer busy. 

Entry Conditions: 
A= 47 (X'2F') 
C=logical drive number (0-7) 

Exit Conditions: 
Success always. 
Only AF is altered by this SVC. 

Example: 
LO C .t ;rest Drive 1 to see if it 

;is bUSY. 

LO A ,@RSLCT ;Jf it is, continue 
;selecting it 

RST 28H ;call the @RSLCT SVC 

Software 134 

0 

• 



--

@RSTOR 
Issue FDC RESTORE Command 

Issues a disk controller RESTORE command. 

Entry Conditions: 
A= 44 (X'2C') 
C=logica/ drive number (0-7) 

Exit Conditions: 
Success, Z flag set. 
Failure, NZ flag set. 

A= error number 

Example: 

SVC Number 44 

See the example for@CKDRV in Sample Program D, lines 38-39. 

Software 135 



@RUN 
Run Program 

SVCNumbern 

Loads and executes a program file. If an error occurs during the load, the sys
tem prints the appropriate message and returns. 

Entry Conditions: 
A = 77 (X'4D') 
DE= pointer to FCB containing the fi/espec of the file to RUN 
Note: The FCB must be located where the program being loaded will not 
overwrite it. 

Exit Conditions: 
Success, the new program is loaded and executed. 
Failure, the error is displayed and return is made to your program. 

General: 

HL = return code (See the section "Converting to TRSDOS Version 6" 
for information on return codes.) 

HL is returned unchanged if no error occurred and can be used as a 
pointer to a command line. 

Example: 
See Sample Program A, lines 62-74. 

Software 136 

0 

• 



@RWRIT 
Rewrite Sector 

i 

., 

SVC Number 70 

Rewrites the current sector, following a write operation. The @WRITE function 
advances the NRN after the sector is written. @RWRIT decrements the NRN 
and writes the disk buffer again. Do not use @RWRIT when positioned to the 
start of a file. 

Entry Conditions: 
A = 70 (X'46') 
DE= pointer to FCB for the file to rewrite 

Exit Conditions: 
Success, Z flag set. 
Failure, NZ flag set. 

A= error number 

Example: 
LD DE,FCB ;Point to the File Control 

;Block 
LD A ,ll!RWRIT ;PerforM a re-write of the 

;current sector 
RST 28H ;call the @RWRIT SVC 

Software 137 



@SEEK 
Seek a Cylinder 

SVC Number 46 

Seeks a specified cylinder and sector. @SEEK does not return an error if you 
specified a non-existent drive or an invalid cylinder. @SEEK performs no action 
if the specified drive is a hard disk. 

Note: Seek of a sector is not supported by TRS-80 hardware. An implied seek 
is included in sector reads and writes. 

Entry Conditions: 
A= 46 (X'2E') 
C = logical drive number 
D = cylinder to seek 
E = sector to seek 

Exit Conditions: 
Success always. 
Only AF is altered by this SVC. 

Software 138 

• 

0 



j 

@SEEKSC SVC Number 71 
Seek Cylinder and Sector 

Seeks the cylinder and sector corresponding to the next record of the specified 
file. (This is done by examining the NAN field of the FCB.) No error is returned 
on physical seek errors. 

Entry Conditions: 
A = 71 (X'47') 
DE = pointer to the file's FCB 

Exit Conditions: 
Success always. 

Example: 
LD DE,FCB ;Point to the File Control 

;BlocK 
LD A,@SEEKSC ;cause the next sector to be 

;sEEKed before it 1s 
;actually needed 

RST 2BH ;call the @SEEKSC SVC 

Software 139 



@SKIP 
Skip a Record 

SVC Number 72 

Causes a skip past the next logical record. Only the record number contained 
in the FCB is changed; no physical 1/0 takes place. 

Entry Conditions: 
A = 72 (X'48') 
DE= pointer to FCB for the file to skip 

Exit Conditions: 
If the Zfiag is set or if A= X'1C' orx·1o;then the operation was successful. 

Otherwise, A= error number. if A= X'1 C' is returned, the file pointer is 
positioned at the end of the file. Any Appending operations would be 
performed here. If A=X'1D' is returned, the file pointer is positioned 
beyond the end of the file. 

General: 
AF is altered by this SVC. 
BC contains the current record number. This is the same value as that 

returned by the @LOC SVC. 

Example: 
See the example for@LOC in Sample Program C, lines 305-311. 

Software 140 



j 

) 

@SLCT SVC Number 41 

Select a New Drive 
Selects a drive. The time delay specified in your configuration (SYSTEM 
(DELAY= YIN)) is made if the drive selection requires it. · 

Entry Conditions: 
A=41 (X'29') 
C=logica/ drive number (0-7) 

Exit Conditions: 
Success, Z flag set. 
Failure, NZ flag set. 

A= error number 

General: 
Only AF is altered by this SVC. 

Software 141 



@SOUND SVC Number 104 
Sound Generation 

Generates sound using specified tone and duration codes. Interrupts are dis
abled during execution. 

Entry Conditions: 
A= 104 (X'68') 
B = function code 

bits 0-2: tone selection (0-7 with 0= highest and 7=Iowest) 
bits 3-7: tone duration (0-31 with 0 = shortest and 31 = longest) 

Exit Conditions: 
Success always. 

Only AF is altered by this SVC. 

Example: 
See Sample Program B, lines 43-45. 

Software 142 

0 

• 



j 

., 

@STEPI SVC Number 45 

Issue FDC STEP IN Command 
Issues a disk controller STEP IN command. This moves the drive head to the 
next higher-numbered cylinder. @STEP! is intended for sequential read/write 
operations, such as disk formatting. 

Entry Conditions: 
A= 45 (X'2D') 
C=logical drive number 

Exit Conditions: 
Success, Z flag set. 
Failure, NZ flag set. 

A= error number 

General: 
Only AF is altered by this SVC . 

Software 143 



@TIME 
Get Time 

SVC Number 19 

Gets the system time in display format (HH:MM:SS). 

Entry Conditions: 
A = 19 (X'13') 
HL = pointer to buffer to receive the time string 

Exit Conditions: 
Success always. 

HL = pointer to the end of buffer+ 1 
DE= pointer to start of TIME$ storage area in TRSDOS 
AF and BC are altered by this SVC. 

Example: 
See the example for @DATE in Sample Program F, lines 252-253. 

Software 144 

• 

C 



@VDCTL 
Video Functions 

., 

SVC Number 15 

Performs various functions related to the video display. The B register is used 
to pass the function number. 

Entry Conditions: 
A= 15 (X'0F') 
B selects one of the following functions: 

If B = 1, return the character at the screen position specified by HL. 
H = row on the screen (0-23), where 0 is the top row 
L = column on the screen (0-79), where 0 is the leftmost column 

If B = 2, display the specified character at the position specified by 
HL. 

C = character to be displayed 
H = row on the screen (0-23), where 0 is the top row 
L = column on the screen (0-79), where 0 is the leftmost column 

If B = 3, move the cursor to the position specified by HL. This is done 
even if the cursor is not currently displayed. 

H = row on the screen (0-23), where 0 is the top row 
L =column on the screen (0-79), where 0 is the leftmost column 

If B = 4, return the current position of the cursor. 

If B = 5, move a 1920-byte block of data to video memory. 
HL = pointer to 192(1)-byte buffer to move to video memory 

If B = 6, move a 1920-byte block of data from video memory to a 
buffer you supply. In 40 line by 24 character mode, there must 
be a character in each alternating byte for proper display. 

HL = pointer to 1920-byte buffer to store copy of video memory HL 
must be in the range X'23FF' < HL < X'EC01. 

If B = 7, scroll protect the specified number of lines from the top of the 
screen. 

C=number of lines to scroll protect (0-7). Once set, scroll protect 
can be removed only by executing @VDCTL with B = 7 and 
C = 0, or by resetting the system. Clearing the screen with 
(l!!IE[)~ erases the data in the scroll protect area, but the 
scroll protect still exists. 

If B = 8, change cursor character to specified character. If the cursor 
is currently not displayed, the character is accepted anyway 
and is used as the cursor character when it is turned back on. 
The default cursor character is an underscore (X'5F') under 
Version 6.2 and a X'B0' under previous versions. 

C = character to use as the cursor character 

If B=9, (under Version 6.2 only) transfer 80 characters to or from 
the screen. 

If C = 0, move characters from the buffer to the screen 
If C = 1 , move characters from the screen to the buffer 
H = row on the screen 
DE = pointer to 8(1) byte buffer 

Note: The video RAM area in the Models 4 and 4P is 2048 bytes (2K). 
The first 1920 bytes can be displayed. The remaining bytes contain the 
type-ahead buffer and other system buffers . 

Software 145 



Exit Conditions: 
If B= 1: 

Success, Z flag set. 
A= character found at the location specified by HL 
DE is altered. 

Failure, NZ flag set. 
A= error number 

lfB=2: 
Success, Z flag set. 

DE is altered. 
Failure, NZ flag set. 

A= error number 

lfB=3: 
Success, Z flag set. 

DE and HL are altered. 
Failure, NZ flag set. 

A= error number 

If 8=4: 
Success always. 

lfB=S: 

HL = row and column position of the cursor. H = row on the 
screen (0-23), where 0 is the top row; L = column on the 
screen (0-79), where 0 is the leftmost column. 

Success always. 

If 8=6: 

HL = pointer to the last byte moved to the video+ 1 
BC and DE are altered. 

Success always. 
BC, DE, and HL are altered. 

lfB=7: 
Success always. 

BC and DE are altered. 

If 8=8: 
Success always. 

A = previous cursor character 
DE is altered. 

If B = 9 (under Version 6.2 only): 
Success, Z flag set. 

BC, HL, DE are altered. 
Failure, NZ flag set because H is out of range. 

A= error code 43 (X'2B'). 

General: 
Functions 5, 6, and 7 do not do range checking on the entry parameters. 
If HL is not in the valid range in functions 5 and 6, the results may be 

unpredictable. 
Only function 3 (B = 3) moves the cursor. 
If C is greater than 7 in function 7, it is treated as modulo 8. 
AF and B are altered by this SVC. 

Example: 
See Sample Program F, lines 304-327. 

Software 146 



., 

@VER SVC Number 73 
Write and Verify a Record 

Performs a @WRITE operation followed by a test read of the sector (if the write 
required physical 1/0) to verify that it is readable. 

If the logical record length is less than 256, then the logical record in the user 
buffer UREC is transferred to the file. If the LRL is equal to 256, a full sector 
write is made using the disk 1/0 buffer identified at file open time. 

Entry Conditions: 
A = 73 (X' 49') 
DE= pointer to FCB for the file to verify 

Exit Conditions: 
Success, Z flag set. 

HL = pointer to user buffer containing the logical record 
Failure, NZ flag set. 

A = error number 

General: 
Only AF is altered by this SVC. 

Example: 
See Sample Program C, lines 338-346 . 

Software 14 7 



@VRSEC 
Verify Sector 

SVC Number 50 

Verifies a sector without transferring any data from disk. 

Entry Conditions: 
A= 50 (X'32') 
D = cylinder to verify 
E = sector to verify 
C=logica/ drive number (0-7) 

Exit Conditions: 
Success, Z flag set. 
Failure, NZ flag set 

A= error number 

General: 
AF is always altered by this SVC. 
If the sector is a system sector, the sector is readable if an error 6 is 

returned; any other error number signifies an error has occurred. 

Example: 
See the example for @WRSEC in Sample Program D, lines 68-76. 

Software 148 

• 

0 

• 



@WEOF 
Write End Of File 

., 

SVC Number 74 

Forces the system to update the directory entry with the current end-of-file 
information. 

Entry Conditions: 
A = 74 (X'4A') 
DE= pointer to the FCB for the file to WEOF 

Exit Conditions: 
Success, Z flag set. 
Failure, NZ flag set. 

A= error number 

General: 
AF is always altered by this SVC. 

Example: 
LO OE,FCB iPoint at the File Control 

iBlocK 
LO A ,@WEOF 

RST 2BH 

Software 149 

;Force the directory entrY 
;io be updated nowt 
iinstead of when the file 
;is closed 
iCall the @WEOF SVC 



@WHERE SVCNumber7 

Locate Origin of SVC 
Used to resolve the relocation address of the calling routine. 

Entry Conditions: 
A=7 (X'07') 

Exit Conditions: 
Success always. 

HL = pointer to address following RST 28H instruction 
AF is always altered by this SVC. 

Example: 
See Sample Program F, lines 36-60. 

Software 150 

C 

-



@WRITE 
Write a Record 

i 

--

) 

SVC Number 75 

Causes a write to the next record identified in the File Control Block. 

If the logical record length is less than 256, then the logical record in the user 
buffer UREC is transferred to the file. If the LAL is equal to 256, a full sector 
write is made using the disk 1/0 buffer identified at file open time. 

Entry Conditions: 
A = 75 (X'4B') 
HL = pointer to user record buffer UREC (unused if LAL= 256) 
DE= pointer to FCB for the file to write 

Exit Conditions: 
Success, Z flag set. 
Failure, NZ flag set. 

A= error number 

General: 
AF is always altered by this SVC. 

Example: 
See the example for @VER in Sample Program C, lines 338-346. 

Software 151 



@WRSEC 
Write a Sector 

Writes a sector to the disk. 

Entry Conditions: 
A = 53 (X'35') 

SVC Number 53 

HL = pointer to the buffer containing the sector of data 
D = cylinder to write 
E = sector to write 
C = logical drive number (0-7) 

Exit Conditions: 
Success, Z flag set. 
Failure, NZ flag set. 

A= error number 

General: 
Only AF is altered by this SVC. 

Example: 
See Sample Program D, lines 68-76. 

Software 152 

0 



j 

., 

@WRSSC SVC Number 54 
Write a System Sector 

Writes a system sector (used in directory cylinder). 

Entry Conditions: 
A = 54 (X'36') 
HL = pointer to the buffer containing the sector of data 
D = cylinder to write 
E = sector to write 
C =logical drive number 

Exit Conditions: 
Success, Z flag set. 
Failure, NZ flag set. 

A= error number 

General: 
Only AF is altered by this SVC. 

Example: 
See Sample Program D, lines 94-104 . 

Software 153 



@WRTRK 
Write a Track 

SVC Number 55 

Writes an entire track of properly formatted data. The data format must conform 
to that described in the disk controller's reference manual. @WRTRK must 
always be preceded by @SLCT. 

Entry Conditions: 
A = 55 (X'37') 
HL = pointer to format data 
D = track to write 
C =logical drive number (0-7) 

Exit Conditions: 
Success, Z flag set. 
Failure, NZ flag set. 

A= error number 

General: 
Only AF is altered by this SVC. 

Software 154 

• 

0 



Numerical List of SVCs 

Following is a numerical list of the SVCs: 

Dec Hex Label Function 

j 
0 00 @IPL Reboot the system 
1 01 @KEY Scan •KI device, wait for character 
2 02 @DSP Display character at cursor, advance 

cursor 
3 03 @GET Get one byte from a logical device 
4 04 @PUT Write one byte to a logical device 
5 05 @CTL Make a control request to a logical 

device 
6 06 @PAT Send character to the line printer 
7 07 @WHERE Locate origin of CALL 
8 08 @KBD Scan keyboard and return 
9 09 @KEVIN Accept a line of input 

10 0A @DSPLY Display a message line 
11 0B @LOGER Issue a log message 
12 0C @LOGOT Display and log a message 
13 00 @MSG Message line handler 
14 0E @PRINT Print a message line 
15 0F @VDCTL Position/locate cursor, get/put char-

acter at cursor 
16 10 @PAUSE Suspend program execution 
17 11 @PARAM Parse an optional parameter string 
18 12 @DATE Get system date in the format MM/ 

DDNY 
19 13 @TIME Get system time in the format 

HH:MM:SS 
20 14 @CHNIO Pass control to the next module in a ----, device chain 
21 15 @ABORT Load HL with X'FFFF' error and goto 

J @EXIT 
22 16 @EXIT Exit program and return to TRSDOS 
23 Reserved for future use 
24 18 @CMNDI Entry to command interpreter with 

return to the system 
25 19 @CMNDR Entry to command interpreter with 

return to the user 
26 1A @ERROR Entry to post an error message 
27 1B @DEBUG Enter DEBUG 
28 1C @CKTSK Check if task slot in use 
29 10 @ADTSK Add an interrupt level task 
30 1E @RMTSK Remove an interrupt level task 
31 1F @RPTSK Replace the currently executing task 

vector 
32 20 @KLTSK Remove the currently executing task 
33 21 @CKDRV Check for drive availability 
34 22 @DODIR Do a directory display/buffer 
35 23 @RAMDIR Get directory record(s) or free space 

into RAM 
36-39 Reserved for future use 

40 28 @DCSTAT Test if drive is assigned in OCT 
41 29 @SLCT Select a new drive 
42 2A @DCINIT Initialize the FDC 
43 2B @DCRES Reset the FDC 
44 2C @ASTOR Issue FDC RESTORE command 
45 20 @STEPI Issue FDC STEP IN command 

Software 155 



Dec Hex Label Function 

46 2E @SEEK Seek a cylinder 
47 2F @RSLCT Test if requested drive is busy 
48 30 @RDHDR Read a sector header 
49 31 @RDSEC Read a sector 
50 32 @VRSEC Verify a sector 
51 33 @RDTRK Read a track 
52 34 @HDFMT Hard disk format 
53 35 @WRSEC Write a sector 
54 36 @WRSSC Write a system sector 
55 37 @WRTRK Write a track 
56 38 @RENAM Rename a file 
57 39 @REMOV Remove a file or device 
58 3A @INIT Open or initialize a file or device 
59 3B @OPEN Open an existing file or device 
60 3C @CLOSE Close a file or device 
61 3D @BKSP Backspace one logical record 
62 3E @CKEOF Check for end of file 
63 3F @LOC Calculate the current logical record 

number 
64 40 @LOF Calculate the EOF logical record 

number 
65 41 @PEOF Position to the end of file 
66 42 @POSN Position a file to a logical record 
67 43 @READ Read a record from a file 
68 44 @REW Rewind a file to its beginning 
69 45 @RREAD Reread the current sector 
70 46 @RWRIT Rewrite the current sector 
71 47 @SEEKSC Seek a specified cylinder and sector 
72 48 @SKIP Skip the next record 
73 49 @VER Write a record to a file and verify 
74 4A @WEOF Write end of file 
75 4B @WRITE Write a record to a file 
76 4C @LOAD Load a program file 0 77 4D @RUN Load and execute a program file 
78 4E @FSPEC Fetch a file or device specification 
79 4F @FEXT Set up a default file extension 
80 50 @FNAME Fetch filename/extension from 

directory 
81 51 @GTDCT Get Drive Code Table address 
82 52 @GTDCB Find specified or first free DCB 
83 53 @GTMOD Find specified memory module 

address 
84 Reserved for future use 
85 55 @RDSSC Read a system sector 
86 Reserved for future use 
87 57 @DIRRD Read directory record 
88 58 @DIRWR Write directory record 
89 Reserved for future use 
90 SA @MULB Multiply 8-bit unsigned integers 
91 SB @MUL16 Multiply 16-bit by 8-bit unsigned 

integers 
92 Reserved for future use 
93 5D @DIVS Divide 8-bit unsigned integers 
94 SE @DIV16 Divide 16-bit by 8-bit unsigned 

integers 
95 Reserved for future use 
96 60 @DECHEX Convert decimal ASC 11 to 16-bit 

binary value 
97 61 @HEXDEC Convert a number in HL to decimal 

ASCII 

Software 156 



Dec Hex Label Function 

98 62 @HEX8 Convert a 1-byte number to hex ASCII 
99 63 @HEX16 Convert a 2-byte number to hex ASCII 

100 64 @HIGH$ Obtain or set the highest and lowest 
unused RAM addresses 

101 65 @FLAGS Point IV to the system flag table 
102 66 @BANK Check, set, or reset a 32K bank of ..--.... memory - 103 67 @BREAK Set user or system break vector 
104 68 @SOUND Generate sound (tone and duration) 

105-127 Reserved for future use. 

J 

., 
Software 157 



Alphabetical List of SVCS 

Following is an alphabetical list of the SVC labels and numbers: 

Label 

@ABORT 
@ADTSK 
@BANK 
@BKSP 
@BREAK 
@CHNIO 
@CKDRV 
@CKEOF 
@CKTSK 
@CLOSE 
@CMNDI 
@CMNDR 
@CTL 
@DATE 
@DCINIT 
@DCRES 
@DCSTAT 
@DEBUG 
@DECHEX 
@DIRRD 
@DIRWR 
@DIVS 
@DIV16 
@DODIR 
@DSP 
@DSPLY 
@ERROR 
@EXIT 
@FEXT 
@FLAGS 
@FNAME 
@FSPEC 
@GET 
@GTDCB 
@GTDCT 
@GTMOD 
@HDFMT 
@HEXDEC 
@HEXB 
@HEX16 
@HIGH$ 
@INIT 
@IPL 
@KBD 
@KEY 
@KEVIN 
@KLTSK 
@LOAD 
@LOC 
@LOF 
@LOGER 
@LOGOT 
@MSG 

Software 158 

Dec 
21 
29 

102 
61 

103 
20 
33 
62 
28 
60 
24 
25 

5 
18 
42 
43 
40 
27 
96 
87 
88 
93 
94 
34 

2 
10 
26 
22 
79 

101 
80 
78 
3 

82 
81 
83 
52 
97 
98 
99 

100 
58 
0 
8 
1 
9 

32 
76 
63 
64 
11 
12 
13 

Hex 

15 
1D 
66 
3D 
67 
14 
21 
3E 
1C 
3C 
18 
19 
5 

12 
2A 
2B 
28 
1B 
60 
57 
58 
5D 
SE 
22 

2 
0A 
1A 
16 
4F 
65 
50 
4E 
3 

52 
51 
53 
34 
61 
62 
63 
64 
3A 

0 
8 
1 
9 

20 
4C 
3F 
40 
0B 
0C 
00 

C 



Label Dec Hex 

@MUL8 90 5A 
@MUL16 91 5B 
@OPEN 59 3B 
@PARAM 17 11 
@PAUSE 16 10 
@PEOF 65 41 - @POSN 66 42 

- @PRINT 14 0E 
@PRT 6 6 
@PUT 4 4 
@RAMDIR 35 23 
@RDHDR 48 30 
@RDSEC 49 31 
@RDSSC 85 55 
@RDTRK 51 33 
@READ 67 43 
@REMOV 57 39 
@RENAM 56 38 
@REW 68 44 
@RMTSK 30 1E 
@RPTSK 31 1F 
@RREAD 69 45 
@RSLCT 47 2F 
@RSTOR 44 2C 
@RUN 77 40 
@RWRIT 70 46 
@SEEK 46 2E 
@SEEKSC 71 47 
@SKIP 72 48 
@SLCT 41 29 
@SOUND 104 68 
@STEPI 45 20 

,.- @TIME 19 13 

J 
@VDCTL 15 0F 
@VER 73 49 
@VRSEC 50 32 
@WEOF 74 4A 
@WHERE 7 7 
@WRITE 75 4B 
@WRSEC 53 35 
@WRSSC 54 36 
@WRTRK 55 37 

., 
Software 159 



Sample Programs 
The following sample programs use many of 
the supervisor calls described in this man
ual. These programs are not meant to be 
examples of the most efficient programming, 
but are designed to illustrate as many super
visor calls as possible. 

Software 160 

• 

0 



• 

., 

Ln # 

lllllJ/ll 
l!llll/12 
Jlll/1/13 
ll Jl/l/14 
Jlll/lll5 
Jlll/1/17 
llll/lll8 
llllllll9 
ll/1/11/l 
llllll 11 
llll/ll2 
1Hllll3 
/l/llll4 
Jl/1/115 
Jlll/ll6 
J,IIJ/ll7 
Jl/1/118 
Jlll/119 
Jlllll21l 
Jlll/121 
ll/1/122 
Jl/11123 
Jlll/12 4 
Jlllll25 
Jl/lll26 
Jlll/l27 
Jl/11128 
Jlll/12 9 
Jlll/l3/I 
llllll 31 
Jlll/132 
Jl/lll33 
llll/134 
/lll/l35 
llll/l36 
ll/1/13 7 
ll/lll38 
llll/139 
11/lll 4/I 
ll/lll41 
Jl/l/142 
Jlll/143 
llll/144 
ll/lll45 
Jlll/l46 
Jlll/147 
llll/148 
J,lfW49 
Jlllll5/l 
Jlll/151 
Jlll/l52 
Jlll/15 3 
ll/1/154 
ll/1/155 
llll/156 
ll/lll57 
ll/lll58 
ll/lll5 9 
llll/16/1 
llll/l61 
llll/16 2 
/1/11163 
llll/16 4 
llll/16 5 
/lll/166 
llll/16 7 

@DEBUG: 
@DSPLY: 
@FSPEC: 

@KEY: 
@LOAD: 
@RUN: 

MESSl: 

Sample Program A 
Source Line 

This program asks the user whether to run a program 
or debug it and executes the SVCs required to perform 
the chosen action. 

PSECT 5/lll/lH ;The program begins at x'S~~g• 

Define the equates for the SVCs that will be used. 

EQU 
EQU 
EQU 

EQU 
EQU 
EQU 

DEFM 
DEFB 
DEFM 
DEFB 

27 
lll 
78 

1 
76 
77 

'Do you wish to 
/!AH 
'Press <ENTER> 
/!DH 

;Enter the debugger (DEBUG) 
;Display a message 
;Verify a filespec or devspec and 
;load it into a File Control Block 
;Get a character from the keyboard 
;Load a program into memory 
;Execute a program 

RUN this Program or DEBUG it ? 1 

;This moves the cursor to the next line 
to RUN or <BREAK> to DEBUG' 

;Terminate the message string 

PROGRM: DEFM 
DEFB 

'DI REX/CMD' 
/!DH 

;Sample program to debug or execute 
;Terminate the filespec 

FCBl: DEFS 32 ;File Control Block for the program 

Get the File Control Block for the program 'DIREX/CMD'. 

START: LD HL,PROGRM 

DE,FCBl 
A,@FSPEC 

;Point at the filespec we want to 
;execute or load into memory 
;Point at the File Control Block LD 

LD 

RST 

LD 
LD 
RST 

LD 
RST 

CP 
JR 

28H 

HL,MESSl 
A,@DSPLY 
28H 

A,@KEY 
28H 

/!DH 
Z,RUNIT 

;Perform a validity check on the filespec 
;and copy the filespec into the FCB. 
;Call the @FSPEC SVC 

;Point at our prompting message 
;and print it on the display 
;Call the @DSPLY SVC 

;Get the reply from the keyboard 
;Call the @KEY SVC 

;Was the character an <ENTER>? 
;If Z was set, then run the program 

If it wasn't an <ENTER>, then we assume it was a <BREAK> and 
load the program and enter the debugger. 

LD 
LD 
RST 

DE,FCBl 
A,@LOAD 
28H 

;Point at the File Control Block 
;and have this program loaded into memory 
;Call the @LOAD SVC 

Note that this program must not be overwritten by the program 
we are loading. In this example, it is known that the program 
we are loading starts at x'3jjj' and ends below x•sggg•_ 

LD 
RST 

A,@DEBUG 
28H 

Execute the program 

RUNIT: LD 
LD 

RS"r 

DE,FCBl 
A,@RUN 

28H 

;Now invoke the system debugger, DEBUG 
;Call the @DEBUG svc 
;Note that @DEBUG does not return 

;Point at the File Control Block 
;Tell TRSDOS to load and execute the 
;program 
;Call the @RUN SVC 

Software 161 



!H11!68 
ll!Hl69 
llllnll 
llllll71 
/Jllll72 
)H/1!73 
/Jllll7 4 
/Jlll!7S 
llllll7 6 

.:>c:1rnp1e t'rogram A, con11nuea 

;Note that @RUN returns only if it can't 
:find the program 

Note that the program that is loaded by the @RUN svc must not 
overwrite the File Control Block in this program. In this case, 
it is known that the program we are executing starts at x•3ggg• 
and ends below the starting point of this program, x'Siii'. 

END START 

Software 162 

C 



i 

J 

' ., 

/a/JIIIH 
/61111112 
1111111!3 
111111114 
111111115 
111111116 
111111117 
11111111a 
1!1111111 
111111n 
11111112 
11111113 
11111114 
11111115 
11111116 
11111117 
11111118 
11111!19 
/31!11211 
11111!21 
11111!22 
11111123 
1111112 4 
11111125 
11111126 
11111127 
1111/!28 
111!112 9 
111111311 
11111131 
11111132 
11111133 
1!111134 
11111135 
11111136 
1111113 7 
1111113 8 
11111139 
111111411 
11111141 
1111/142 
11111143 
11111144 
11111145 
/111114 6 
1111114 7 
1111114 8 
1111114 9 
Jl/1115/1 
11111151 
11111152 
Jlllll5 3 
11111154 
11111155 
11111156 
11/11157 
11111158 
1111115 9 
IIIIJl61l 
Jlllll61 
IIIIJl6 2 
JlJl/16 3 
1111116 4 
Jlllll65 
11111166 
1111116 7 
1111116 8 

Sample Program B 

;This program accepts numbers from the keyboar~ 
;and uses them to demonstrate the 
;arithmetic and numeric conversion SVCs. 

;It also uses the sound function to produce a tone at the 
;beginning of the program. 

PSECT 3111111H 

These are the SVCs used in this program. 

@DECHEX:EQU 
@DIVS: EQU 
@DIV16: EQU 
@DSP: EQU 
@DSPLY: EQU 
@EXIT: EQU 
@HEX8: EQU 
@HEX16: EQU 
@HEXDEC:EQU 
@KEY: EQU 
@KEYIN: EQU 
@MUL8: EQU 
@MUL16: EQU 
@SOUND: EQU 

96 
93 
94 
2 
111 
22 
98 
99 
97 
1 
9 
9/l 
91 
1114 

Other equates. 

NUM5: 
NUM4: 
NUM3: 
NUM2: 
NUMl: 
BRK: 
CCC: 

EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 

5 
4 
3 
2 
1 
8/IH 
/!DH 

;Convert decimal ASCII to binary 
;Perform 8-bit division 
;Perform 16-bit division 
;Display a character 
;Display a message 
;Return to TRSDOS Ready or the caller 
;Convert an 8-bit value to hex ASCII 
;Convert a 16-bit value to hex ASCII 
;Convert a binary value to Decimal ASCII 
;Read a character from *KI 
;Accept an input line from *KI 
;Perform 8-bit multiplication 
;Perform 16-bit multiplication 
;Produce a tone 

;Character code for <BREAK> key 
;Next line position 

;Perform a subroutine 2 times to display prompting messages, key in 
;and display divisor and dividend, convert those numbers to 
;binary for the divide, and position the cursor. 

START: LO 
LO 
RST 
CALL 
LO 
LO 
LO 
CALL 
LO 
LO 
CALL 
CALL 
LO 
LO 

B,SAH 
A,@SOUND 
28H 
KEYIN 
A,C 
(DIVDl) ,A 
HL,MESS9 
DSPLAY 
A, (DIVDll 
C,A 
HEX8 
KEYIN 
A,C 
(DIVRl) ,A 

;Make the longest, hiqhest tone 
;Make the noise 

;Perform keyin subroutine for dividend 

;Store the dividend in memory 
;Address of hex message 
;Display hex message 
;Get the divisor into C for conversion 
;from binary to hex 
;Convert the number to hex 
;Perform subro•.1tine for divisor 

;Store the divisor in memory 

;N9w we are ready to perform the divide on the numbers entered. 

LO 
LO 
LO 
LO 
RST 

C,A 
A, (DIVDll 
E,A 
A,@DIV8 
28H 

;Put the divisor back for the @DIVS SVC 
;Get the dividend into E 
;for the @DIVS SVC 
;Call the @DIVS SVC 

;Now display the answer and the remainder in decimal. 

LO (ANSll,A ;Store the answer in memory 

Software 163 



1111116 9 
llllfJ711 
11111171 
llllfJ72 
11111173 
1111117 4 
1111117 5 
11111176 
fJllfJ77 
llllfJ78 
1111117 9 
111111811 
11111181 
11111182 
llllfJ83 
llllfJ8 4 
fJllfJ85 
fJllfJ86 
11111187 
fJfJfJ88 
fJllll89 
llfJll9fJ 
fJllll91 
fJllfJ92 
fJfJfJ93 
fJfJll94 
llfJll95 
fJfJll96 
11111197 
llfJll98 
11111199 
fJlllfJII 
JllllfJl 
fJfJlfJ2 
fJJllJl3 
fJlllfJ4 
fJJllllS 
fJfJlfJ6 
llfJlfJ7 
fJlllfJ8 
fJlllfJ9 
llllllfJ 
fJlllll 
1111112 
fJfJll3 
llfJ114 
llfJllS 
llfJ116 
fJllll7 
fJllll8 
fJllll 9 
fJll12JI 
1111121 
fJJll22 
1111123 
1111124 
fJll125 
fJll126 
fJll127 
fJll128 
fJfJl29 
fJll13fJ 
fJll131 
llfJl32 
111113 3 
111113 4 
Jljll35 

LD 
LD 
LD 
CALL 
LD 
LD 
Lb 
CALL 
LD 
CALL 
LD 
LD 
LD 
CALL 

Sample Program B, continued 

A,E 
(REMl) ,A 
HL,MESS3 
DSPLAY 
A, (ANSl) 
L,A 
H, JI 
HEXDEC 
HL,MESS4 
DSPLAY 
A, (REMl) 
L,A 
H, ll 
HEXDEC 

;Get the remainder 
;Store the remainder in memory 
;Load address of answer message 
;Display the message 
;Get the answer into L for conversion 
;Number to convert 
;Put a fJ in the MSB 
;Perform subroutine to display decimal 
;Address of remainder message 
;Display remainder message 
;Put remainder in A for hex conversion 
;Number to convert 
;Put fJ in the MSB 
;Display decimal value 

;Now divide with a 16-bit dividend. 

LD HL,MESS6 
CALL DSPLAY 
LD A,@KEYIN 
LD HL,BUF6 
LD B,NUMS 
LD C,/l 
RST 28H 
LD A,@DECHEX 
RST 28H 
LD (DIVD2),BC 
LD HL,MESS9 
CALL DSPLAY 
LD DE, (DIVD2) 
CALL HEX16 
CALL KEYIN 
LD A,C 
LD (DIVRl),A 
LD HL,MESS3 
CALL DSPLAY 
LD HL, (DIVD2) 
LD A, !DIVRl) 
LD C,A 
LD A,@DIV16 
RST 28H 
LD (REMl),A 
LD (ANS2) ,HL 
CALL HEXDEC 
LD HL,MESS4 
CALL DSPLAY 
LD A, (REMl) 
LD L,A 
LD H,/l 
CALL HEXDEC 

;Address of 2nd dividend message 
;Display next message 
;Key in up to 5 digits 
;Store the number 
;Maximum length of number 

;Convert the number to binary 

;Store the dividend 
;Address of hex message 
;Display hex message 
;Put dividend into DE for conversion 
;Convert the number from binary to hex 
;Key in divisor 
;Put the divisor into A 
;Store the divisor in memory 
;Address of answer message 
;Display the message 
;Put dividend into HL 
;Get divisor into C 

;Store the remainder 
;Put the answer into HL 
;Display answer in decimal 
;Address of remainder message 
;Display remainder message 
;Get the remainder 
; into L 
;Put a j in MSB 
;Convert the remainder to decimal 

;Now try some multiplication of 8 bits. 

LD 
CALL 
LD 
LD 
LD 
LD 
RS•r 
LD 
RST 
LD 
LD 
CALL 
LD 
LD 

RL,MESS8 
DSPLAY 
A,@KEYIN 
HL,BUF2 
B,NUM2 
C, fJ 
28H 
A,@DECHEX 
28H 
(MCANDl) ,BC 
HL,MESSlfJ 
DSPLAY 
A,@KEYIN 
HL,BUF2 

;Address of MUL8 message 
;Display first multiplicand message 
;Key in a 2-digit number 
;Put it here 
;Maximum number of characters 

;Convert the number to binary for math 

;Store the multiplicand 
;Address of MULS multiplier message 
:Display first multiplier message 
;Key in the multiplier 
;Put it here 

Software 164 

value 

C 



j 

., 

illll36 
JJ/1137 
JJ/1138 
JJ/1139 
jJjJ14jJ 
)J)Jl41 
JJ!Jl42 
jJ)Jl43 
1!11144 
!Jlll45 
JJ/1146 
ll/1147 
JJ/1148 
ll/1149 
ll/1151! 
!Jlll51 
ll/1152 
!Jlll53 
/111154 
JJ/1155 
JJ/1156 
ll/1157 
ll/1158 
JJ/1159 
lllll61l 
lllll61 
1111162 
/Jlll63 
1!11164 
JJ/1165 
ll/1166 
!Jlll67 
JJ/1168 
lllll69 
1!1117/;J 
lllll 71 
111117 2 
JJ/1173 
)Jjll74 
JJ/1175 
ll/1176 
ll/1177 
ll/1178 
lllll 79 
)Jjll8jJ 
jljll8 l 
ll/1182 
1!11183 
ll/1184 
!Jlll85 
111!186 
1!11187 
/Jjll88 
jJjll89 
/Jill 91! 
!Jlll91 
1!11192 
JJ/1193 
lllll 94 
!Jill 95 
)JjJl 96 
111!197 
ll/1198 
lllll 99 
111121111 
/Jll21ll 
11/12112 
11/12113 

LD 
LD 
RST 
LD 
RST 
LD 
LD 
LD 
RST 

5amp1e t'rogram ts, conunuea 

B,NUMl 
C, jJ 
28H 
A,@DECHEX 
28H 
CMIERll ,BC 
HL,MESS13 
A,@DSPLY 
28H 

;Maximum number of characters 

;Convert the multiplier to binary for math 

;Store multiplier in memory 
;Address of multiplier message 
;Display multiplier message 

;Now multiply the two numbers just entered. 

LD 
LD 
LD 
LD 
LD 
RST 
LD 
LD 
CALL 

A, CMCANDll 
C,A 
A,(MIERl) 
E,A 
A,@MUL8 
28H 
L,A 
H, II 
HEXDEC 

;Get the multiplicand into c 

;Get the multiplier into E 

;Put the product into L 
;Put II in the MSB 
;Convert the product to decimal 

;Now multiply a 16-bit by an 8-bit. 

LD 
CALL 
LD 
LD 
LD 
LD 
RST 
LD 
RST 
LD 
LD 
CALL 
LD 
LD 
LD 
LD 
RS"r 
LD 
RST 
LD 
LD 
LD 
RST 
LD 
LD 
LD 
LD 
RST 
LD 

LD 
LD 
LD 
RST 
LD 
LD 
LD 
LD 
RST 
LD 
LD 
RST 
LD 
RST 

HL ,MESSll 
DSPLAY 
A,@KEYIN 
HL,BUFS 
B,NUM4 
C, II 
28H 
A,@DECHEX 
28H 
(MCAND2) ,BC 
HL,MESS12 
DSPLAY 
A,@KEYIN 
HL,BUF3 
B,NUM2 
C ,JJ 
28H 
A,@DECHEX 
28H 
(MIERl) ,BC 
HL,MESS13 
A,@DSPLY 
28H 
HL, CMCAND2) 
A, (MIERl) 
C,A 
A,@MUL16 
28H 
H,L 

L,A 
DE,BUFS 
A,@HEXDEC 
28H 
A,CCC 
<DE) ,A 
HL,BUFS 
A,@DSPLY 
28H 
HL,MESS14 
A,@DSPLY 
28H 
A, @KEY 
28H 

;Address of multiplicand message 
;Display 2nd multiplicand message 
;Enter larger multiplicand 
;Put it here 
;Maximum number of characters 

;Convert the number to binary for math 

;Store the multiplicand in memory 
;Address of multiplier message 
;Display message 
;Enter larger multiplier 
;Put it here 
;Maximum number of characters 

;Convert the number to binary for math 

;Store the multiplier in memory 
;Address of product message 
;Display the message 

;Put multiplicand into HL 
;Get the multiplier into C 

;Multiply the two numbers 

;Get the 2nd byte of the product into 
;H for conversion 
;Get the LSB into L for conversion 
;Convert the high-order byte to decimal 
;for the display 

;Tell the display when to stop 

;Display the product 

;Address of end message 
;Display end message 

;Allow the user to enter any character 
;or hit <BRE:AK> 

Software 165 



!Hl2J;J4 
J;JJ;J2J;J5 
JJJ;J2J;J6 
J;JJ;J2J;J7 
J;JJ;J2J;J8 
J;JJ;J2J;J9 
JIJ;J21J;J 
J;JJ;J211 
JIJ;J212 
J;JJ;J213 
J;JJ;J214 
JJJ;J215 
J;JJ;J216 
J;JJ;J217 
J;JJ;J218 
J;JJ;J219 
JIJ;J22J;J 
J;JJ;J221 
J;JJ;J222 
J;JJ;J223 
J;JJ;J224 
J;JJ;J225 
J;JJ;J226 
J;JJ;J227 
J;JJ;J228 
J;JJ;J229 
J;JJ;J23J;J 
JJJ;J231 
JJJJ232 
JIJ;J233 
JJJ;J234 
jJJ;J235 
jJjJ236 
JljJ237 
jJJ;J238 
jJJ;J239 
jJJ;J24jJ 
J;JjJ241 
jJJ;J242 
JJJ;J243 
JJJ;J244 
jJJ;J245 
JJJ;J246 
jJJ;J247 
jJjJ248 
jJJ;J249 
jJJ;J25J;J 
JJJ;J251 
J;JjJ252 
JJJ;J253 
JJJ;J254 
jJJ;J255 
jJjJ256 
JljJ25 7 
jJJJ258 
JljJ259 
jJJJ26jJ 
jJjJ261 
JJJ;J262 
jJJ;J263 
jJjJ264 
JJjJ265 
JJJ;J266 
JJJ;J267 
JJJ;J268 
jJJl269 
jJjJ27jJ 
jJjJ271 

Sample Program B, continued 

CP 
JP 
LD 
RST 

BRK 
NZ, START 
A,@EXIT 
28H 

;Is it <BREAK>? 
;Yes, go back to beginning 
;No, exit the program 

;These are the subroutines used by the calls to 
;display a message, key in a 3-digit number, and convert it 
;from decimal to binary. 

KEYIN: LD 
CALL 
LD 
LD 
LD 
LD 
RST 
LD 
RST 
RET 

HL,MESSl 
DSPLAY 
HL,BUF4 
B,NUM3 
C, jJ 
A,@KEYIN 
28H 
A,@DECHEX 
28H 

;Display message 
;Put the number here 
;Maximum number of characters 

;Key in a number 

;Convert the number to binary 

;Return to next sequential instruction 

;Display what was loaded into HL before the call. 

DSPLAY: LD 
RST 
DEC 
LD 

DSPLYLP:LD 
LD 
RST 
DJNZ 
RET 

;Convert 1 

HEXB: LD 
LD 
RST 
LD 
LD 
LD 
LD 
RST 
RET 

;Convert 2 

HEX16: LD 
LD 
RST 
LD 
LD 
LD 
LD 
RST 
RET 

byte 

bytes 

A,@DSPLY 
28H 

;@DISPLAY SVC 

HL 
B, CHL) 
C,' I 

A,@DSP 
28H 
DSPLYLP 

to hexadecimal. 

A,@HEXB 
HL, BUF3 
28H 
A,CCC 
(HL) ,A 
A,@DSPLY 
HL,BUF3 
28H 

to hexadecimal. 

A,@HEX16 
HL,BUF6 
28H 
A,CCC 
( HL) , A 
A,@OSPLY 
HL,BUF6 
28H 

;Set HL back to blank byte 
;Load B with the number of bytes 
;Put a blank into C 
;Display the blank 
;until the correct number 
;of blanks have been displayed 
;Return to next instruction 

;Convert 1 byte to hex ASCII 
;Put the converted value here 

;Tell display when to stop 
;Put CCC at end of buffer 
;Display the hex value 

;Return to next instruction 

;Convert a 2-byte number to hex ASCII 
;Put the converted value here 

;CCC at end of buffer so display 
;knows when to stop 
;Display the converted value 
;Address of converted value 

;Return to next instruction 

;Convert from binary to decimal and display decimal value. 

HEXDEC: LD 
LD 
RST 
LO 
LD 
LD 
LD 
RST 
RET 

A,@HEXDEC 
DE,BUF5 
28H 
A,CCC 
(DE) , A 
A,@DSPLY 
HL,BUFS 
28H 

;Convert from binary to decimal 
;Put converted value here 

;CCC at end of buffer so display 
;knows when to stop 
;Display the hex value 
;It's here 

;Return to next instruction 

Software 166 

C 

• 



• 

., 

jljl272 
lJll27 3 
lJll274 
1111275 
1111276 
lJll277 
lJll278 
1111279 
11112811 
1111281 
1111282 
1111283 
111128 4 
1111285 
1111286 
1111287 
lJll288 
lJll289 
lJll2 911 
lJll291 
lJll292 
lJll2 93 
lJll294 
lJll2 95 
lJll2 96 
lJll2 97 
11112 98 
lJll299 
111131111 
lJll3111 
llll3lJ2 
lJlJJll 3 
lJll3ll4 
lJll3lJ5 
lJll3116 
lJll3lJ7 
lJII 3 JlJ 8 
JlJJlJ3JlJ9 
lJll31JlJ 
JlJJlJ311 
JlJJlJ312 
JlJjlJ313 
JlJJlJ314 
011315 
jlJjlJ316 
jlJjlJ317 
JlJJlJ318 
JlJJlJ319 
jlJjlJ32JlJ 
JlJJlJ321 
011322 
JlJJlJ323 

Sample Program B, continued 

;These are the storage declarations. 

BUF6: 
BUF5 
BUF4: 
BUF3: 
BUF2: 
DIVRl: 
DIVDl: 
ANSl: 
REMl: 
MCANDl: 
MIERl: 
MCAND2: 
DIVD2: 
ANS2: 

DEFS 
DEFS 
DEFS 
DEFS 
DEFS 
DEFB 
DEFB 
DEFB 
DEFB 
DEFB 
DEFB 
DEFW 
DEFW 
DEFW 

6 
5 
4 
3 
2 
JlJ 
JlJ 
JlJ 
II 
JlJ 
JlJ 
II 
II 
JlJ 

;Below are messages and prompting text used in the program. 

DEFB 
MESSl: DEFM 

DEFB 
DEFB 

MESS3: DEFM 
DEFB 
DEFB 

MESS4: DEFM 
DEFB 
DEFB 

MESS6: DEFM 
DEFB 
DEFB 

MESS8: DEFM 
DEFB 
DEFB 

MESS9: DEFM 
DEFB 
DEFB 

MESSljlJ: DEFM 
DEFB 
DEFB 

MESSll: DEFM 
DEFB 
DEFB 

MESS12: DEFM 
DEFB 

MESS13: DEFM 
DEFB 

MESS14: DEFM 
DEFB 

13 
'Enter a number 
3 
21 
'The answer is' 

;Number of blanks to print after message 1 
(1-255).' 
;Message-terminating character 
;Number of blanks to print after message 3 

3 ;Terminating character 
18 ;Blanks after message 
'The remainder is' 
3 ;Terminating character 
6 ;Blanks after message 
'Enter a number (4369-65535).' 
3 ;Terminating character 
15 ;Blanks after message 
'Enter a number (l-28).' 
3 ;Terminating character 
16 ;Blanks after message 
'In hex ASCII, that is' 
3 ;Terminating character 
17 ;Blanks after message 
'Enter a number Cl-9).' 
3 ;Terminating character 
11 ;Blanks after message 
'Enter a number Cl-41011>.' 
3 ;Terminating character 
15 ;Blanks after message 
'Enter a number (1-15).' 
3 ;Terminating character 
'The product of those 2 numbers is ' 
3 ;Terminating character 
'Press <BREAK> to end or any other key to continue.' 
iDH ;Terminating character 

END s·rART 

Software 167 



Ln i 

/Hl/1/11 
/1/1/1/12 
11/1/1/13 
/1/1/1/14 
/1/1/1/15 
/1/1/1/16 
/iJ/1/1/18 
/iJ/1/iJ/19 
/iJ/1/11/iJ 
/iJ/1/111 
/iJ/1/112 
/iJ/1/113 
/iJ/1/114 
/iJ/iJ/115 
ll/1/116 
ll/1/111 
/iJ/1/118 
/iJ/1/119 
/iJ/1/12/1 
/iJ/1/121 
lll//iJ22 
/iJ/1/123 
/iJ/1/124 
/iJ/1/125 
llllfl26 
/iJ/1/127 
/iJ/1/128 
/iJflfl29 
/iJfl/13/iJ 
/iJ/11131 
/iJ/1/132 
/iJ/1/133 
/iJfl/134 
/iJflfl35 
llflfl36 
/iJ/1/131 
/iJflfl38 
/iJfl/139 
/iJ/1/1411 
/iJ/11141 
/iJfl/142 
/iJ/1/143 
/iJ/11144 
/iJ/1/145 
/iJ/1/146 
/iJ/1/14 7 
/iJ/1/148 
/iJ/1/iJ49 
/iJ/1/15/1 
ll/1/151 
/iJ/11152 
/iJ/1/153 
/iJ/1/iJ54 
/iJfl/155 
/iJ/1/156 
/iJflfl57 
/iJ/1/158 
/iJ/11159 
/1/1/16/iJ 
/iJ/iJ/161 
/1/1/16 2 
/iJ/1/163 
lll/fl6 4 
/iJ/1/165 
Jlfl/16 6 
/iJ/11167 

Sample Program C 

Source I Line 41 

This program prompts for two filenames, opens the first 
file, and creates the second. Then the data in the first 
file is copied to the second file. While the Copy progresses, 
the current record number is displayed in parentheses. 

PSECT ;This program starts at x'3iii' 

First, declare the equates for the SVCs we intend to use. 
This is not mandatory, but it makes the program easier to follow. 

@CLOSE: EQU 
@DIRRD: EQU 
@DSP: EQU 
@DSPLY: EQU 
@ERROR: EQU 
@EXIT: EQU 
@FEXT: EQU 
@FNAME: EQU 
@FSPEC: EQU 
@HEXDEC:EQU 
@INIT: EQU 
@KBD: EQU 
@KEYIN: EQU 
@LOC: EQU 
@OPEN: EQU 
@READ: EQU 
@REMOV: EQU 
@VER: EQU 

6fl 
87 
2 
1/iJ 
26 
22 
79 
8/iJ 
78 
97 
58 
8 
9 
63 
59 
67 
57 
73 

;Close a file or device 
;Read a directory record 
;Display character at cursor 
;Display a message 
;Display an error message 
;Exit and return to TRSDOS or the caller 
;Add a default file extension 
;Fetch a filespec from the directory 
;Verify and load a filespec into the FCB 
;Convert a binary value to decimal ASCII 
;Open an existing file or create a new file 
;Scan the keyboard for a character 
;Accept a line of text from the *KI device 
;Return the current logical record number 
;Open an existing file 
;Read a record from an open file 
;Delete a file from disk 
;Write a record to disk. Does the same thing 
;as @WRITE (Svc 75), but it also makes sure 
;the written data is readable. 

First, prompt for the source filespec using the @DSPLY svc. 

BEGIN: LD 
LD 
RST 

HL,MESGl 
A,@DSPLY 
28H 

;Get the first message 
;Display a line on the screen 
;Call the @DSPLY SVC 

Now, read the filename from the keyboard using the @KEYIN svc. 

LD 
LD 
LD 
LD 
RST 
JP 
JP 

LD 
OR 
JR 

HL,FILEl 
B,24 
C,/iJ 
A,@KEYIN 
28H 
C,QUIT 
NZ,ERR 

A,B 
A 
Z,BEGIN 

;Put the name of the 1st file here 
;Allow up to 24 characters 
;A zero is required by the svc 
;Get a filename from the user 
;Call the @KEYIN SVC 
;The user pressed <Break> 
1An Error occurred 

1Get the number of characters 
;See if that value was zero 
;Nothing was entered, ask again 

The user has typed something, so it must be checked for validity 
using the @FSPEC SVC. 

LD 
LD 

LD 

RST 
JR 

HL,FILEl 
DE,FCBl 

A,@FSPEC 

28H 
Z,ASK2 

;Point at the text the user entered 
;Point at the File Control Block 
;that is to be used for the source file. 
;The @FSPEC svc will make sure the filename 
;that is in buffer named "filel" is valid. 
;If it is, it is copied into the File 
;Control Block (FCB) to be used by the @OPEN 
;or @INIT svc later on. 
;Call the @FSPEC SVC 
;The name for file 1 is ok, so skip this 

At this point the filename specified for file 1 has been found 

Software 168 

0 



J 

JlJlJl68 
JlJlJl6 9 
JlJlJl7Jl 
JlJlJl71 
JlJlJl7 2 
JlJlJl7 3 
JlJlJl7 4 
JlJlJ17 5 
JlJlJl76 
JlJlJl77 
JlJlJl7 8 
JlJlJl7 9 
JlJlJl8Jl 
JlJlJl81 
JlJlJl82 
JlJlJl8 3 
JlJlJl8 4 
JlJlJl85 
JlJlJl86 
JlJlJl87 
JlJlJl88 
JlJlJl89 
JlJlJl9Jl 
JlJlJl91 
JlJlJl 92 
JlJlJl93 
JlJlJl94 
JlJlJl95 
JlJlJl96 
JlJlJl97 
JlJlJl98 
JlJlJl99 
JlJllJlJl 
JlJllJll 
JlJllJl2 
JlJllJl3 
JlJllJl4 
JlJllJlS 
JlJllJl6 
JlJllJl7 
JlJllJl8 
JlJllJl9 
JlJlllJl 
JlJllll 
JlJl112 
JlJlll 3 
JlJl114 
JlJlllS 
JlJl116 
JlJlll 7 
JlJlll8 
JlJlll 9 
JlJll2Jl 
JlJll21 
JlJll22 
JlJll23 
JlJll24 
JlJll25 
JlJll26 
JlJll27 
JlJll28 
JlJll29 
JlJll3Jl 
JlJl131 
JlJll32 
JlJl133 
JlJll3 4 
JlJl135 

ASK2: 

F20K: 

FDIV: 

EXTN: 

Sample Program C, continued 

to be in an invalid format. The following code will print the 
error message. 

LO 
LD 
RST 
JR 

HL,BAOFIL 
A,@DSPLY 
28H 
BEGIN 

;Point at the bad filename message 
;Display it 
;Call the @DSPLY SVC 
;Start over 

At this point, the source filename appears to be valid. 
The code below asks for the second filename and checks it for 
validity also. 

LO 
LO 
RST 
LD 
LD 
LD 
LD 
RST 
JP 
JP 

LD 
OR 
JR 

HL,MESG2 
A, @DSPLY 
28H 
HL,FILE2 
8,24 
C, Jl 
A, @KEYIN 
28H 
C,QUIT 
NZ,ERR 

A,B 
A 
Z,ASK2 

;Prompt for the target filename 
;Print that on the screen 
;Call the @DSPLY SVC 
;Put the name of the 2nd file here 
;Allow up to 24 characters 
;A zero is required by the svc 
;Get a filename from the user 
;Call the @KEYIN SVC 
;The user pressed <Break> 
;An Error occurred 

;Get the number of characters 
;See if that value was zero. 
;Nothing was entered, ask again 

The user has typed something, so it must be checked for validity 
using the @FSPEC SVC. 

LD 
LD 
LD 
RST 
JR 

HL,FILE2 
DE,FCB2 
A,@FSPEC 
28H 
Z,F20K 

;Point at the text the user entered 
;Point at the File Control Block 
;Check the name for validity 
;Call the @FSPEC svc 
;The name for file 2 is ok, so skip this 

The name for file 2 is invalid so print an error message 

LD 
LD 
RST 
JR 

HL,BADFIL 
A,@DSPLY 
28H 
BEGIN 

;Point at the bad filename message 
;Display it 
;Call the @DSPLY SVC 
;Star~ over 

Now we will attempt to add an extension to the target file 
if the user did not specify one. We use the extension that 
was specified on the source file. If it does 
not have one, then we will not try to add one to the target file. 

LD 

LD 
CP 
JR 
CP 
JR 
CP 
JR 
INC 
JR 

INC 
LD 
LD 
RST 

HL,FCBl+l 

A, (HL) 
'/' 
Z,EXTN 
JlDH 
Z,NOEXT 
Jl3H 
Z,NOEXT 
HL 
FDIV 

HL 
DE, FCB2 
A,@FEXT 
28H 

;Point at the source filename 
;We start with the second character since 
;the filename must be at least one character 
;Get a character from the filespec 
;Is the character the extension prefix? 
;Yes, this will be our default extension 
;Have we reached the end of the filespec? 
;Yes, there is no extension so don't add one 
;Test both terminators 

;Advance the pointer to the next character 
;Keep looking 

;Advance pointer to first byte of extension 
;Point at FCB for the target file (file 2) 
;Add an extension if one is not present 
;Call the @FEXT SVC 

Now we have two filenames. First we will open the source file 
to make sure it exists. 

Software 169 



/,ljJ136 
11/,1137 
/,1/,1138 
/,1/,1139 
/,1/,114/,1 
/,1/,1141 
/,1/,1142 
/,1/,1143 
/,1/,1144 
/,1/,1145 
/,1/,1146 
111114 7 
11/,1148 
1111149 
/,1/,115/,1 
/,1/,1151 
/,JjJ152 
/,JjJ153 
/,1/,1154 
IIIJ155 
/,1/,1156 
11/,1157 
/,ljJ158 
/,1/,1159 
/,ljJ16/,I 
11/,1161 
/,1/,1162 
/,1/,1163 
/,JjJ16 4 
11/,1165 
/,1/,1166 
/,1/,1167 
11/,1168 
/,1/,1169 
11111 711 
1111171 
11/,1172 
/,JjJl 7 3 
11/,1174 
/,JIJ175 
/,1/,1176 
/,ljJl 77 
'1'1178 
/,ljJl 79 
/,1/,118/,1 
/,1/,1181 
/,1/,1182 
1111183 
/,1/,1184 
jJjJ185 
/,1/,1186 
/,JjJ187 
/,JjJ188 
1111189 
/,l/,119jJ 
11/,1191 
/,1/,1192 
/,1/,1193 
/,1/,1194 
/,1/,1195 
/,JjJl 96 
/,ljJ197 
/,1/,1198 
11/,1199 
111121111 
/,1/,12/,11 
/,ljJ2/,12 
11112113 

Sample Program C, continued 

NOEXT: LO OE,FCBl 
HL,BUFl 

;Point at the File Control Block for filel 
;Point at the system buffer. This buffer 
;is used by the system to block data that 
;is written to disk and de-block data that 
;is read from disk when the Logical Record 
;Length of the file is not 256. If it is 
;256, then this buffer is not used. 

SIZ: 

LO 

LO 

LO 
RST 
JR 
CP 
JP 

B, II 

A,@OPEN 
28H 
Z, SI Z 
42 
NZ,ERR 

;Use LRL 256 for now since we don't know 
;what to use yet. 
;Open the file 
;Call the @OPEN SVC 
;The file opened and is LRL 256. 
;Was the error a LRL Open Fault? 
;No, perhaps the file does not exist. 

At this point, the file is open and we can now examine the 
directory to find out what LRL it was created with so we can 
use that value to make the copy. 

LO 

ANO 
LO 
LD 

LO 
PUSH 
LO 
RST 

POP 
LO 
RST 

LD 
LO 

LD 

A, ( FCB1+6) 

7 
C,A 
A, (FCB1+7) 

B,A 
BC 
A, @CLOSE 
28H 

BC 
A,@OIRRD 
28H 

IX,HL 
A,(IX+4) 

(LRL),A 

;Get the byte in the FCB which contains 
;the drive number the file is on 
;Erase all other information in that byte 
;Save that value here 
;This reads the Directory Entry Code (DEC) 
;out of the FCB so we can use it 
;Store the DEC here 
;Save that value for now 
;We can close the source file for now 
;Call the @CLOSE SVC 

;Get the DEC value back off the stack 
;Read the directory record for that file 
;Call the @OIRRD SVC 

;Put the pointer to the directory record 
;here and read the DIR+4 entry which 
;contains the LRL of the source file. 
;Save that value 

Before we go any further, we should check to see if the target file 
already exists. 

LO 
LO 
LD 
LOIR 

LO 
LO 
LO 
LD 
RST 
JR 
CP 
JR 

DE,COPY 
HL, FCB2 
BC, 32 

OE,FCB2 
HL,BUF2 
B,/,1 
A,@OPEN 
28H 
Z,EXISTS 
42 
NZ, NOFILE 

;First, make a copy of the FCB 
;in case we have to delete a file 
;Move the entire block 

1Point at the target File Control Block 
;Use this as the buffer for now 
;Use LRL 256 for now 
;Open it and see if it is there 
;Call the @OPEN SVC 
;The file already exists, better ask 
;Was the error a LRL mismatch? 
;No, so the file does not exist. 

EXISTS: LO 

LO 
RST 

HL,FEXST 

A,@OSPLY 
28H 

;Point at a prompt asking if it is ok 
;to erase the file that already exists 
;Print that message 
;Call the @DSPLY SVC 

WAIT: LO 
RS'r 
JR 

CP 
JR 

A, @KBD 
28H 
NZ,WAIT 

'Y' 
Z,KILLIT 

;Wait for the user to type Y or N 
;Call the @KBD SVC 
;Loop until something is typed 

;Was a 'Y' typed? 
;Then kill the file 

Software 170 

• 

0 



• 

/J/J2/14 
/l/12/15 
il/12/J6 
/J/12/17 
/l/J2/18 
/J/J2/19 
/J/J2 l/l 
/1/1211 
/J/J212 
/l/1213 
/1/1214 
/J/1215 
ll/J216 
/J/1217 
/1/1218 
/111219 
/!/122/1 
1111221 
ll/J222 
1111223 
11/1224 
/l/1225 
/1/1226 
/1/1227 
/1/1228 
/1/1229 
/1/123/! 
/l/1231 
/l/1232 
/1/1233 
/1/1234 
/1/1235 
/1/1236 
1111237 
/1/1238 
/1/1239 
/l/12 4/1 
/1/1241 
JIJ1242 
JIJl243 
JJJl244 
Jl/!2 45 
JI/J246 
Jl/1247 
ll/1248 
/l/1249 
11/125/l 
/l/1251 
Jl/1252 
Jl/1253 
JIJl254 
/l/1255 
/l/1256 
11/1257 
Jl/1258 
JIJl25 9 
JJJl26JI 
/l/J261 
JIJl262 
Jl/1263 
/l/J264 
JJ/1265 
/l/1266 
JIJl267 
JI/J268 
JIJl26 9 
JljJ27jJ 

SHUT: 

CP 
JR 
CP 
JR 
CP 
JR 

LD 
LD 
RST 
JP 

Sample Program C, continued 

'y' 
Z,KILLIT 
'N' 
Z,SHUT 
'n' 
NZ,WAIT 

DE,FCB2 
A,@CLOSE 
28H 
QUIT 

;Check for lowercase too 

;Do they want to leave the file alone? 
;No, just close the file and quit 
;Was it a lowercase 'N 1 ? 
;No, loop until we see something we like 

;Close the target file 

;Call the @CLOSE SVC 
;Exit to TRSDOS 

At this point, we have been given the OK to delete the file 
that has the same name as the target file. 

KILLIT: LD 
LD 
RST 

LD 
LD 
RST 

JP 

LD 
LD 
LD 
LDIR 

C,/!DH 
A,@DSP 
28H 

DE,FCB2 
A,@REMOV 
28H 

NZ ,ERR 

llL,COPY 
DE,FCB2 
BC,32 

;First move display to a new line 
;Display an <Enter> 
;Call the @DSP svc 

;Point at the target file's FCB 
;Delete the file from disk 
;Call the @REMOV SVC. (This is the same 
;as the @KILL call on other TRSDOS systems.) 
;An error occurred, print it and quit 
;Note that after a @REMOV succeeds, 
;the filespec is removed from the FCB. 
;So we have to keep a copy around 
;in case we need it. 
;Get the copy 
;Put it here 
;Move up to 32 bytes 
;Copy the FCB so we can continue 

Now we know what Logical Record Length (LRL) to use in the 
copy, so we can open the source file and create the target file 
with the correct record lengths. 

NOFILE: LD 
LD 
RST 
LD 
LD 
RST 

LD 
LD 
LD 
LD 
LD 
RST 
JP 

LD 
LD 
RST 

LD 
LD 
CP 
JR 
LD 
JR 

LRL256: LD 

LRLCOM: LD 
LD 

HL,FCBl 
A,@DSPLY 
2811 
HL,SPACES 
A,@DSPLY 
28H 

DE,FCBl 
HL,BUFl 
A,(LRL) 
B,A 
!\,@OPEN 
28H 
NZ,ERR 

llL,ARROW 
A,@DSPLY 
28H 

DE,FCB2 
A,(LRL) 
JI 
Z,LRL256 
HL,BUF2 
LRLCOM 
llL,BUFl 

B,A 
A,@INIT 

;Point at the filename in the FCB 
;Print that name 
;Call the @DSPLY SVC 
;Point at some spaces 
;Space over a few places on the screen 
;Call the @DSPLY svc 

;Point at File Control Block for source file 
;Put data in this 
;Read the Logical Record Length 
;Load the Logical Record Length 
;Open the source file 
;Call the @OPEN svc 
;Open failed 

;Point at the arrow text 
;Print that to show the direction of copy 
;Call the @DSPLY SVC 

;Point at File Control Block for target file 
;Get the Logical Record Length 
;Is the LRL 256? 
;Then we do something special 
;Use a different buffer for target file 
;Jump to common code 
;We use the same buffer when the LRL is 256 
;since there is no need to block and de-block 
;the data. 
;Load the Logical Record Length 
;Open the target file 

Software 171 



/3/3271 
/3/3272 
/3/3273 
/3/3274 
/3/3275 
/3/3276 
/3/3277 
/3/3278 
/3/3279 
/3/328/3 
/3/3281 
/3/3282 
)1/3283 
/3/3284 
/3/3285 
/1/1286 
/3/328 7 
/3/3288 
/3/3289 
/3/329/3 
/3/3291 
/3/3292 
/3/3293 
/3/3294 
/3/3295 
/3/3296 
/3/3297 
/3/3298 
/3/3299 
/3/33/3/3 
/3/33/31 
/3/33/32 
/3/33/33 
/1/33/3 4 
/3/33/35 
/3/33/36 
/3/33/37 
/3/33/38 
/3/33/39 
/3/331/3 
/3/3311 
/3/3312 
/3/3313 
/3/3314 
/3/3315 
/3/3316 
/3/3317 
/3/3318 
/3/3319 
/3/332/3 
/3/3321 
/3/3322 
/3/3323 
Jl/1324 
/3/3325 
/3/3326 
/3/3327 
/3/3328 
/3/3329 
/3/333/3 
/3/3331 
/3/3332 
/3/3333 
/3/3334 
/3/3335 
/3/3336 
/3/3337 
/3/3338 

LOOP: 

EDIT: 

NUMBR: 

RST 
JR 

LD 

LD 
LD 
LD 
AND 
LD 
LD 
RST 
LD 
LD 
RST 

LD 
LD 
RST 

Sample Program C, continued 

28H 
NZ,ERR 

DE,FILE2 

A, (FCB2+7l 
B,A 
A,(FCB2+6) 
7 
C,A 
A,@FNAME 
28H 
HL,FILE2 
A,@DSPLY 
28H 

HL,SPACES 
A,@DSPLY 
28H 

,call the @INIT SVC 
.;Init failed 

;We are going to get the filename for 
;the target file from the system 
;instead of using the one we have. The 
;reason for this is that the system will 
;append the drive number to the filename 
;if one was not specified. 
,Get the Directory Entry Code for the file 
;Put the DEC here 
;Get the Drive Number from the FCB 
;Lose all data except the drive number 
;Store drive number here 
:Have the system produce a filespec 
;Call the @FNAME SVC 
;Now point at the filespec produced 
;and print it out 
,call the @DSPLY SVC 

;Space over a few more places 
;so the display will look neat 
,call the @DSPLY svc 

At this point, both files are open and ready to be used. 
The following code reads a record from the source file 
and writes it to the target file. This is done until an 
end of file is encountered. 

LD 
LD 
LD 
RST 
JR 
LD 

DE,FCBl 
HL,BUFFER 
A,@READ 
28H 
NZ,EOF 
DE,FCB2 

;Point at file l (source file) 
;Put data here 
;Read a record from the source file 
,call the @READ SVC 
;Jump if the eof has been reached 
;Point at file 2 (target file) 

Before writing the record, display the record number, which 
is obtained from the @LOC svc. 

LD A,@LOC 
RST 28H 

PUSH BC 
POP HL 
LD DE,LOCMSG+l 
LD A,@HEXDEC 
RST 28H 

LD A,' ' 
LD HL,LOCMSG 
CP <HL) 
JR NZ,NUMBR 
INC HL 
JR EDIT 

DEC HL 
LD A,' ( I 

LD ( HL) , A 

LD HL,LOCMSG 
LD A,@DSPLY 
RST 28H 

;Get the current record number 
,call the @LOC svc 

;Get the current record number 
;and put it in register HL 
;Store the result here. 
;Convert binary to ASCII in decimal format 
,call the @HEXDEC SVC 

;Get a blank 
,Look at the front of the buffer 
;Is the character a blank? 
;A number has been found 
;Advance the pointer 
;Loop until we find a number 

;Back up one position 
;Get the character we want to insert 
;Store that character. 
;The buffer now contains 
;<none or more spaces>(record number) 
;<7 left-cursor characters><etx> 
;Point at this text 
;and display it on the screen 
,call the @DSPLY SVC 

Now write the record to the target file. 

LD DE,FCB2 ;Point at the FCB for the target file 

Software 172 

C 



1111339 
fi/fi/34/il 
fi/fi/341 
fi/fi/342 
fi/fi/343 
fi/fi/344 
fi/fi/345 
fi/fi/346 
fi/fi/347 
fi/fi/348 
fi/fi/349 
fi/fi/35/il 
fi/fi/351 
fi/fi/352 
fi/fi/353 
fi/fi/354 
fi/fi/355 
fi/fi/356 
fi/fi/357 
fi/fi/358 
fi/fi/359 
fi/fi/36/il 
fi/fi/361 
fi/fi/362 
fi/fi/363 
fi/fi/364 
fi/fi/365 
fi/fi/366 
fi/fi/367 
fi/fi/368 
fi/fi/369 
fi/fi/37/il 
fi/fi/371 
fi/fi/372 
fi/fi/373 
fi/fi/374 
fi/fi/375 
fi/16376 
fi/fi/377 
fi/fi/378 
fi/fi/379 
fi/fi/38/il 
fi/fi/381 
fi/fi/382 
fi/fi/383 
fi/fi/384 
fi/16385 
fi/fi/386 
fi/fi/387 
fi/fi/388 
fi/fi/389 
f6fi/39fi/ 
fi/fi/391 
fi/fi/392 
fi/fi/393 
fi/fi/394 
fi/fi/395 
fi/fi/396 
fi//1397 
fl/1398 
11/1399 
11114/lfi/ 
fi/114/11 
fi/114/12 
fi/164/i/3 
fi/fi/4/i/4 
/1/14/i/5 

EOF: 

EOFYES: 

QUIT: 

ERR: 

SPACES: 

ARROW: 

OK: 

MESGl: 

MESG2: 

FEXST: 

LD 
LD 

RST 
JR 

JR 

Sample Program C, continued 

HL,BUFFER 
A,@VER 

28H 
NZ, ERR 

LOOP 

;Point at the data read from file 1 
;Write a record to the target file 
;The @VER does the same thing as the 
;@WRITE svc, only it also checks the 
;data to make sure it is readable. 
;Call the @VER SVC 
;An error occurred on write; possibly 
;the disk is full. 
;Loop until an error occurs. 

This code checks the error to make sure it was an end of file 
condition and, if so, closes the source & target files. 

CP 
JR 
CP 
JR 

28 
Z,EOFYES 
29 
NZ,ERR 

;Was it an end of file encountered? 
;Yes, close the file 
;Was it •Record number out of range"? 
;No, must be some other error 

It is possible to get Error 29 if the file being copied has 
an EOF that is not a multiple of the file's LRL 

LD 
LD 
RST 
JR 

LD 
LO 
RST 
JR 

LD 
LD 
RST 

LD 
RST 

DE, FCBl 
A,@CLOSE 
28H 
NZ,ERR 

DE,FCB2 
A,@CLOSE 
28H 
NZ,ERR 

HL,OK 
A,@DSPLY 
28H 

A,@EXIT 
28H 

;Point at file 1 (source file) 
;Close the file 
;Call the @CLOSE SVC 
;An error occ~rred 1 pbort 

;Point at file 2 (target file) 
;Close it also 
;Call the @CLOSE svc 
;An error occurred, abort 

;Print a message saying the copy is done 

;Call the @DSPLY SVC 

;Exit to TRSDOS or the calling program 
;Call the @EXIT SVC 

The @EXIT svc does not return. 

OR 

LD 
LD 
RST 

C,A 
A,@ERROR 
28H 

;Turn on bit 6, which 
1will cause the @ERROR svc to print 
;the short error message. Bit 7 
;is not set, which instructs the @ERROR 
;to abort this program and return to 
;TRSDOS Ready. 
;Put error code & flags in register C 
;Call the system error displayer 
;Call the @ERROR SVC 

Because bit 7 is not set, the @ERROR svc will not return. 

Storage Declaration 

DEFM 
DEFB 
DEFM 
DEFB 
DEFB 
DEFM 
DEFB 
DEFM 
DEFB 
DEFM 
DEFB 
DEFM 
DEFB 

3 
'=> 
3 
116%25 
'I Oki' 
fi/DH 
'Copy Filespec 
3 
'To Filespec >' 
3 

;ASCII Space char.for display formatting 

;Arrow for display shows data direction 

;Advance cursor 1g spaces without erasing 
;Used to indicate the Copy is complete 
;Terminated with an <Enter> 

>' 

'Destination File Already Exists - Ok to Delete it (Y/N) ?' 
3 

Software 173 



J!Jl 4Jl6 BADFIL: DEFM 
J!Jl4Jl7 DEFB 
J!Jl4Jl8 LOCMSG: DEFM 
J!Jl4Jl9 
J!Jl 41Jl DEFB 
J!Jl411 DEFB 
J!Jl412 
J!Jl413 FILEl: DEFS 
J!Jl414 FILE2: DEFS 
J!Jl415 FCBl: DEFS 
J!Jl416 FCB2: DEFS 
J!Jl417 COPY: DEFS 
J!Jl418 LRL: DEFB 
J!Jl419 
J!Jl42Jl BUFl: DEFS 
J!Jl421 BUF2: DEFS 
J!Jl422 BUFFER: DEFS 
J!Jl423 
J!Jl424 END 

Sample Program C, continued 

'Invalid Filename - Try Again' 
/lDH 
' 12345)' 

7%24 
3 

32 
32 
32 
32 
32 
Jl 

256 
256 
256 

BEGIN 

1This will be used in building the LOC 
;Display will appear as Cd) to Cdddddl. 
;Backspace without erasing 
;Etx, used to get the @DSPLY SVC to stop 

;User Text Originally placed here 
;Target Filename goes here 
;32 bytes for the File Control Block 
;32 bytes for the File Control Block 
;An extra copy of the target FCB goes here 
1The Logical Record Length of the source 
;file will be stored here 
;System buffer for File 1 
;System buffer for File 2 
;Data buffer for both files 

;"begin" is the starting address 

Software 17 4 

C 

• 



• 

Ln # 

11/111111 
/111/1/12 
11/111113 
1111/1114 
11/111/15 
11/111/16 
/111/1117 
111111119 
llf1f11/I 
/111/111 
/1/1/112 
11/1/113 
1111/114 
/1/11115 
11111116 
/1111117 
/1/11118 
/1/11119 
1111/12/1 
11/11121 
/111/12 2 
1111/12 3 
1111/124 
/1/1112 5 
/111/126 
1111/12 7 
/1/1112 8 
1111/129 
/111/13/1 
11/1/131 
11/1/132 
/111/133 
/1/1/134 
11/1/135 
11/1/136 
/1/1113 7 
/111/13 8 
11/1113 9 
/1/1114/1 
1111/141 
1111/142 
/111/14 3 
11111144 
1111/145 
11/1/146 
1111114 7 
11111148 
1111114 9 
1111115/1 
11111151 
/111/152 
11/11153 
11/1/154 
1111115 5 
/1/11156 
11/1115 7 
/111/158 
11/1115 9 
/1/1/16/1 
/1/1/161 
1111/162 
/1/1/16 3 
/1/1/16 4 
1111/165 
11/1/166 
11/1/167 

Sample Program D 

Source Line 

This program will read a sector from the disk in Drive g 
and will write it to a disk in Drive 1. The disk in Drive 1 
must be formatted, but should not have anything important on 
it. This program makes an assumption that the directory is 
located on cylinder 2g Cx'l4'). 

PSECT 311/1/IH ;This program begins at x•39gg•. 

Define the equates for the SVCs that will be used. 

@ABORT: EQU 
@CKDRV: EQU 
@DCSTA·r: EQU 
@ERROR: EQU 
@Exr·r: EQU 
@RDSEC: EQU 
@RDSSC: EQU 
@WRSEC: EQU 
@WRSSC: EQU 

21 
33 
4/1 
26 
22 
49 
85 
53 
54 

Other Equates 

SYSSEC: EQU 
USRSEC: EQU 

;Abort and return to TRSDOS 
;Test to see if a drive is ready 
;Verify that a drive is defined in the OCT 
;Display an error message 
;Return to TRSDOS or the calling program 
;Read a sector 
;Read a system sector 
;Write a sector 
;Write a system sector 

;The system sector is Cylinder 29, Sector 9 
;The regular sector is Cylinder 9, Sector 9 

First, test the target drive and make sure it is defined. 

START: LD 
LD 
RST 
JR 

C,l 
A,@OCSTAT 
28H 
NZ,ERROR 

;Select Drive 1 
;Ask if the drive is listed in the DCT 
;Call the @DCSTAT SVC 
;If NZ, then the drive is not defined 
;and we will abort execution. 

Now, test and make sure the target drive contains a formatted 
disk and is write-enabled. 

LD 
LO 

RST 
LO 

JR 
LO 

JR 

C,l 
A,@CKDRV 

28H 
A, 8 

NZ,ERROR 
A, 15 

C,ERROR 

;Select Drive 1 
;Test to see if the disk is formatted 
;and is write-enabled. Note that the 
;disk must be formatted by TRSDOS 6.x 
;or by LOOS 5.1.x to be considered 
;"formatted" by this svc. 
;Call the @CKDRV SVC 
;This will become the error number if the 
;drive was not ready. This is done 
;because the @CKDRV svc does not return error 
;codes. 
;The drive is not ready 
;This will become the error number if the 
;drive is ready and is write-protected. 
;As above, this is done because @CKDRV does 
;not return error messages. 
;The disk is formatted, but it is 
;write-protected. In either case, abort. 

Now that we know the target drive is ready, read a sector 
from the source drive and write it to the target drive (Drive 1). 

LD 
LD 

LD 
LO 
RST 
JR 

C,ll 
DE,USRSEC 

HL,BUFF 
A,@RDSEC 
28H 
NZ,ERROR 

;Select Drive 9 
;Read the first sector on the disk, 
;Cylinder 9, Sector j. 
;Point to a buffer which will hold the sector 
;Read a non-system sector 
;Call the @RDSEC SVC 
;If NZ, an error occurred, so abort 

Software 175 



JllJ/168 
JIJIJ169 
JIJIJl7JI 
JIJIJ171 
JllJ/172 
JIJIJl7 3 
ggg14 
ggg75 
JIJIJl76 
JIJIJl77 
gg91a 
JIJIJl79 
gggag 
ggga1 
ggga2 
JIJIJIB3 
JIJIJl84 
ggga5 
JIJIJl86 
ggga1 
gggaa 
JIJIJl89 
JIJIJl9/I 
Jl/11191 
Jl/1/192 
Jl/1/193 
11/1/194 
Jl/1/195 
1111/196 
JIJl/197 
JIJl/198 
IIJl/199 
JIIIU/1 
Jl/11/11 
JI/JU2 
/J/11/13 
/JJll/14 
JI/JlJIS 
Jl/11116 
/J/11/17 
Jl/11/18 
Jl/11119 
Jl/111/1 
Jl/1111 
/1/1112 
Jl/1113 
Jl/1114 
/1/1115 
11/1116 
/1/1117 
/1/1118 
Jl/1119 
/11112/J 
Jl/1121 
Jl/1122 
Jl/1123 
11/1124 
/1/1125 
/1/1126 
/1/1127 

ERROR: 

BUFF: 

Sample Program D, continued 

Now, write the sector to the target drive. 

LD C,l ;Select Drive 1 
LD DE,USRSEC ;Write the sector to Cylinder II, Sector II 

;on Drive 1 
LD HL,BUFF ;Point to the buffer containing the sector 
LD A,@WRSEC ;Write the sector to disk 
RST 28H ;Call the @WRSEC SVC 
JR NZ,ERROR ;If NZ, an error occurred, so abort 

Now we will read a system sector from Drive g and write it on 
drive 1. The difference between a system sector and a non-system 
sector is that the Data Address Marks (DAM) are different. These 
were written to the disk when it was formatted. TRSDOS 6.x uses 
these as an extra check to make sure that a write of user data 
does not accidentally get placed over a sector containing system 
data. All of the sectors in the directory cylinder are marked 
as system sectors. 

LD 
LD 
LD 
LD 
RST 
JR 

C, II 
DE,SYSSEC 
HL,BUFF 
A,@RDSSC 
28H 
NZ,ERROR 

;Select Drive, 
;Read Cylinder 2j, Sector S 
;Store the sector at this address 
;Read a system sector 
;Call the @RDSSC SVC 
;An error occurred, so abort 

Now write the sector to the target drive as a system sector. 
There is no requirement that a sector must be placed at the 
same cylinder and sector location as it was read from, but 
for simplicity, we are doing that. 

LD C,l 
LD DE,SYSSEC 
LD HL,BUFF 
LD A,@WRSSC 
RST 28H 
JR. NZ,ERROR 

LD A,@EXIT 
RST 28H 

This routine displays 
Note that @CKDRV does 
cannot be used for it 

OR /JCJIH 
LD C,A 
LD A,@ERROR 

RST 28H 

LD A,@ABORT 

RST 28H 

DEFS 256 

EIID START 

;Select Drive 1 
;Write Cylinder 2S, Sector g 
;Point to the data to be written 
:Write a system sector 
;Call the @WRSSC SVC 
;An error occurred, so abort 

;Return to TRSDOS or the calling program 
;Call the @EXIT SVC 

an error message if anything goes wrong. 
not return an error message, so @ERROR 
without some manipulation. 

;Set bit 7 
;Load error number into register C 
;This will display the error message 
;and return to the calling program 
;Call the @ERROR SVC 

;Now, force an abort. This will return 
;to TRSDOS Ready and will abort any 
;JCL file that is currently executing 
;Call the @ABORT SVC 

;256-byte buffer to store the sector that 
;is read and then written 

Software 176 

C 

• 



Ln # 

JlllJJ/11 
11/l/l/12 
/l /l/l/l 3 
ll/l/l/l 4 
/l/l/l/!6 
/l/l/l/17 
/l/1/l/!8 
/l/l/l/!9 
/l/l/ll/l 
/l/l/lll 
/l/l/112 
/l/l/l 13 
/l/lJJ14 
/lJJ/115 
/l/l/ll 6 
/l/lJJl 7 
/l/l/!18 
/l/l/ll 9 
ll/l/!2/l 
/l/l/!21 
/l/l/!22 
/l/l/!23 
/l/l/124 
/l/l/!25 
/l/l/!26 
/l/l/!27 
/l/l/!28 
11/l/!2 9 
/l/l/13/l 
/l/l/131 
/l/lJJ32 
/l/l/!33 
/l/l/!34 
/l/l/!35 
/l/l/!36 
/l/l/!37 
/l/l/!38 
/l/l/!39 
/l/lJJ4/l 
/l/l/!41 
/l/l/l 42 
/l/l/!43 
/l/l/l 4 4 
/l/l/l 45 
/l/lJJ 46 
/l/l/l 4 7 
/l/l/l 48 
/lJJ/!49 
/l/l/!5/l 
/l/l/!51 
/l/l/!52 
/lJl/lS 3 
/l/l/!5 4 
/lJJ/!55 
/l/l/!56 
/l/l/!57 
/l/l/!5 8 
/lJJ/15 9 
/lJJ/16/l 
/lJJ/!61 
/l/l/!6 2 
/l/l/!63 
/l/l/!64 
/l/1/!65 
/l/l/!66 
/l/l/167 

Sample Program E 

Source Line 

This program displays the filenames of the disk in 
Drive~ three different ways. 

PSECT ;Program begins at x•Jggg• 

First, declare the equates for the SVCs we intend to use. 
This is not mandatory, but it makes the program easier to follow. 

@CMNOI: EQU 

@CMNOR: EQU 

@OODIR: EQU 

24 

25 

34 

;Execute a TRSDOS command and return 
;to TRSOOS Ready 
;Execute a TRSDOS command and return 
;to the calling program 
;Display visible filenames on the 
;specified disk drive 

First, pass a "DIR :fif" command to the system. TRSDOS will 
execute this command and then return to this program. 

START: LO HL,OIR/l 
A,@CMNOR 
28H 

;Point at command we want to execute 
;Execute the specified command and return 
;Call the @CMNOR SVC 

DIR/!: 

LO 
RST 

You may have noticed that the DIR displayed the files, but that 
they were not sorted alphabetically. This is because the DIR 
command will not use memory above x'3iij' when it is invoked with 
a @CMNDR svc. This prevents the DIR command from performing a 
sort of the filenames. 

Now do a directory command using the @DODIR svc. 

LO 

LO 
LO 

RST 

8, /l 

C,/l 
A,@DODIR 

28H 

;Use Function j which displays all 
;visible files in the directory. 
;Put source drive number in register C 
;The filenames will be read from the 
;directory and displayed in the 
;order they appear in the directory. 
;Call the @OODIR SVC 

Now pass a "DIR :j" command to the system. This time 
the command will be executed and then TRSDOS will not return 
to this program, but will return to TRSDOS Ready. 

LO 
LO 

RST 

HL,DIR/l 
A,@CMNOI 

28H 

;Point at the command we want performed 
;and execute it, but don't return to 
;this program. 
;Call the @CMNOI SVC 
;This SVC returns to TRSDOS Ready. 

Note that when the library command DIR is performed this time, 
the display of files is sorted. This is because DIR determines 
that it was invoked with a @CMNDI svc, and it will not return 
to the calling program. Therefore, DIR is free to use the 
memory above x•3g9g• to perform the sort of the filenames in 
the directory. 

Constants 

OEFM 

OEFB 

'DIR :f;JI 

/!DH 

ENO START 

;This command is passed to TRSDOS 
;via the @CMNOR and @CMNOI SVCS. 
;It must be terminated with an <ENTER>. 

Software 177 



Ln # 

/J/J/1/11 
/J/J/1/12 
/J/J/1/13 
/J/J/1/14 
/J/J/1/15 
/J/J/1/16 
/J/J/1/17 
/J/J/1/18 
/J/J/1/19 
/J/J/11/1 
/J/1/111 
/J/1/112 
/J/1/113 
/J/1/115 
/J/1/116 
/J/1/117 
/J/1/118 
/J/1/119 
/J/1/12/1 
/J/1/121 
/1/1/122 
/1/1/123 
/1/1/12 4 
/1/1/125 
/J/1/126 
/1/1/12 7 
/J/1/128 
/J/1/129 
/J/1/13/1 
/1/1/131 
/1/1/132 
/1/1/133 
/1/1/134 
/J/1/135 
/J/1/136 
/J/1/137 
/J/1/138 
/J/1/139 
/J/1/14/1 
/J/J/J 41 
/J/1/J 42 
/J/J/J43 
/J/J/J44 
/J/J/J45 
/J/J/146 
/J/1/J 4 7 
/J/1/148 
/1/1/149 
/J/I/J5/J 
/J/1/151 
/J/J/152 
/J/1/15 3 
/J/J/J5 4 
/J/J/155 
/J/J/156 
/J/1/15 7 
/J/1/158 
/J/J/15 9 
/J/1/16/1 
/1/1/161 
/J/1/162 
/1/1/16 3 
/J/1/16 4 
/J/J/16 5 
/J/1/166 
/J/1/16 7 

Sample Program F 

Source Line 

This program adds to the system task scheduler a task 
which displays the date and a running count of the number 
of times the task has been executed. 
For simplicity, the program tries to use task slot i. 
If it is already in use, it assumes that the task using that 
slot is this program, and it kills the task. It then tries to 
recover the memory used by the task in high memory. 
If the task slot is not in use, the task is placed in high memory, 
and the address of the task is passed to the task scheduler. 
The first time you run this program it adds the task, and the 
next time you run this program, it removes the task. 

PSECT ;This program starts at x'3iii' 

First, declare the equates for the SVCs we intend to use. 
This is not mandatory, but it makes the program easier to follow. 

@ADTSK: EQU 
@CKTSK: EQU 
@DATE: EQU 
@DSPLY: EQU 
@EXIT: EQU 
@GTMOD: EQU 
@HEXDEC:EQU 
@HIGH$: EQU 
@RMTSK: EQU 
@VDCTL: EQU 
@WHERE: EQU 

29 
28 
18 
1/1 
22 
83 
97 
l/1/1 
3/1 
15 
7 

;Add a task entry to the scheduler 
;Check to see if a task slot is in use 
;Return the date in ASCII format 
;Display a message 
;Return to TRSDOS Ready or the caller 
;Locate a memory module 
;Convert a binary value to decimal ASCII 
;Read or modify HIGH$ or LOW$ 
;Remove a task entry from the scheduler 
;Perform video operations 
;Find out where the program counter is 
;when this SVC is executed. This is 
;useful in relocatable code that must 
;make absolute address references to 
;call subroutines or modify data. 

CALLR: 

Below we will define a macro to simulate a call relative 
instruction. Since the task must be able to run no matter 
where it is placed, it must use relative jumps and calls. 
The zag instruction set has a jump relative (JR), but does 
not have a call relative instruction. This can be simulated 
using the @WHERE SVC, which returns the address of the caller 
in a register. This address can be adjusted and placed on 
the stack as a return address. Then a jump relative can be used 
to reach the subroutine. 

MACRO u 
PUSH HL 
PUSH BC 
PUSH AF 
LD A,@WHERE 
RST 28H 
LD BC,3+1+1+1+1+2 

ADD HL,BC 
POP AF 
POP BC 
EX (SP) ,HL 
JR H 
ENDM 

;#1 will be the address you want to call 
;Save the registers we damage 
;Save it 
;Save it 
;Get our current address 
;Call the @WHERE SVC 
;Get the lengths of the instructions after 
;the SVC. This will allow the subroutine 
;to return to the correct address. 
;Add that offset to where we are 
;Put stack back 
;Restore registers 
;Put return address on stack and restore HL 
;Jump to the subroutine 
;End of the macro 

This is the main program. It loads at x•3ggg•. It decides 
if it needs to add or remove the task in the scheduler tables. 
If it adds the task, it moves a copy to the top of memory and 
protects it, and adds a task entry to the scheduler. 
If it is removing a task, it kills the entry in the scheduler 

Software 178 

• 

C 



., 

j!Jljl68 
Jljljl6 9 
Jlj!Jl7Jl 
Jljljl71 
Jlj!Jl72 
J!Jljl7 3 
J!Jljl74 
Jljljl75 
Jljljl76 
Jlj!Jl77 
Jlj!Jl78 
Jlj!Jl7 9 
Jlj!Jl8Jl 
Jljljl81 
J!J!Jl 82 
Jljljl83 
Jljljl84 
j!Jljl85 
J!J!Jl 86 
Jljljl87 
J!Jljl88 
Jljljl89 
Jljljl9Jl 
Jlj!Jl91 
J!Jljl92 
J!J!Jl 9 3 
J!J!Jl 9 4 
Jljljl95 
J!Jljl96 
J!J!Jl97 
Jljljl98 
Jljljl99 
Jljlljljl 
J!Jlllll 
Jljlljl2 
Jljl ljl 3 
Jljlljl4 
Jljllj!S 
Jljlljl6 
Jljlljl7 
Jljlljl8 
Jljlljl9 
Jljllljl 
J!Jllll 
Jljl112 
Jljlll3 
Jljl114 
JljlllS 
J!Jlll6 
Jljlll7 
Jljl118 
Jljlll 9 
Jljll2Jl 
J!Jll21 
Jljll22 
Jljll23 
J!Jll2 4 
Jljll25 
Jljll26 
J!Jll27 
J!Jll28 
J!Jll29 
Jljl13Jl 
J!Jl131 
J!Jl13 2 
J!Jl133 
Jljll3 4 
_9jll35 

BEGIN: 

Sample Program F, continued 

tables, and then attempts to recover the memory used by the task. 

LD 
LD 
RST 
JR 

C, Jl 
A,@CKTSK 
28H 
NZ,KILLIT 

;First, we will test slot j 
;to see if anyone is using it 
;Call the @CKTSK SVC 
;There is a task using slot~, kill it 

At this point, we want to add a task to high memory. 
First we find the value for HIGH$ and put a copy of the 
task there. Then we protect the task by moving HIGH$ below 
the new task. 

LD 
LD 
LD 
RST 
LD 

HL,Jl 
B,H 
/\,@HIGH$ 
28H 
(ENDI\DD) ,HL 

;First, get the value of HIGH$ 
;Read HIGH$ 

;Call the @HIGH$ SVC 
;Save this value as the last address 
;that the task will be stored in once it 
;is moved to high memory 

LO OE,HL ;Put that value here 
LD HL,MODEND-1 ;Point at the end of the module 
LO BC,MODEND-MODULE;Move the module from where it is 

;right now to a position below HIGH$ 
LDDR ;Do the copy 

LD 
LO 
LD 
RST 

HL,DE 
B, Jl 
A, @HIGH$ 
28H 

;Now protect the module using HIGH$ 
;Update HIGH$ 

;Call the @HIGH$ svc 

Now we need to load the TCB entry in the module with the address 
of the first instruction to be executed. 

LO IX,HL ;IX now points at memory header 
LO BC,ENTRY-MODULE+l ;Get the offset into the module 

;of the first instruction 
ADD HL,BC ;HL now contains the actual starting address 
LD (IX+(l+MODTCB-MODULE)),L ;Store LSB of the address 
LD (IX+l+(l+MODTCB-MODULE)),H ;Store MSB of the address 

Now the task is ready to run. We now add the entry to the task 
scheduler table. 

LD BC,MODTCB-MODULE+l ;Get offset into the 
;module of the TCB word 

PUSH IX ;Get a copy of the base address 
POP HL ;Put base address here 
ADD HL,BC ;Now HL points at TCB address 
LD DE,HL ;Put that value in DE 
LD C, Jl ;Add this entry to task slot Jl 
LD A,@I\DTSK ;Add this task, to be run every 266.67 msec 
RST 28H ;Call the @I\DTSK SVC 

The main program has now done its work and can exit. 

LD 
LD 
RST 

LD 
RST 

HL,ADDED 
A,@DSPLY 
28H 

/\,@EXIT 
28H 

:Point at a message saying what was done 
:and print it 
;Call the @DSPLY SVC 

;Now exit 
;Call the @EXIT SVC 

This SVC does not return. 

This part of the code removes the task from the scheduler 
tables and then attempts to recover the memory that was used 

Software 179 



/lf;/136 
IH1137 
Jljll38 
Jljl13 9 
JlJll 4Jl 
Jljll41 
J!Jll42 
JlJll43 
J!Jll44 
Jljl145 
JlJll46 
JlJl14 7 
Jljll48 
Jl.11'149 
JljllSJl 
JlUSl 
Jl.11'152 
Jljll53 
JlJll54 
JljllSS 
Jljll56 
J!Jll57 
Jljll58 
JljllS 9 
JlJll6Jl 
JlJll61 
Jljll62 
J!Jll63 
JlJll64 
Jljll65 
Jljll66 
Jljll67 
Jljll68 
Jljll69 
Jljll 7Jl 
JlJll 71 
Jl'Jll 72 
Jljll 7 3 
Jljll74 
Jljll 75 
Jljll76 
Jl.11'1 77 
Jljll 78 
Jl.11'179 
Jljll8Jl 
JlJll81 
Jl.11'182 
Jljll8 3 
JlJll84 
JlJll85 
Jljll86 
Jljll8 J 
JlJll88 
Jl.11'189 
Jl.11'19Jl 
Jljll 91 
Jl'Jll92 
Jljll93 
)ljll 94 
)ljll95 
)ljll 96 
)ljll97 
)l)ll 98 
Jl.11'199 
JlJl2JlJl 
Jl.11'2Jll 
Jljl2Jl2 
Jljl2Jl3 

KILL IT: 

CANT: 

ADDED: 

OK: 

RECLM: 

Sample Program F, continued 

by the task in high memory. If another high memory module 
was added AFTER this task was added, then the memory that 
was used by this task cannot be recovered. 

LO 
LO 
RST 

C • Jl 
A,@RMTSK 
28H 

;We want to remove the task in slot~ 

;Call the @RMTSK SVC 

At this point, the task is no longer called by the operating 
system. Now we want to determine if we can 
reclaim the memory it was using. 

LO 
LO 
RST 
JR 

LD 
LO 
LO 

LO 
RST 
INC 
PUSH 
POP 
XOR 
SBC 

DE,MODNAM 
A,@GTMOD 
28H 
NZ,CANT 

IX,HL 
B • Jl 
HL,Jl 

A,@HIGH$ 
28H 
HL 
IX 
DE 
A 
HL,DE 

;Point at the name of the module 
;Look for a module with that name 
;Call the @GTMOD SVC 
;If NZ is set, then we killed some other 
;task that was using slot,. Oops. 
;In that case, just stop and don't do any 
;more damage. 
;Set IX to point to the module. 
;Read the current value of HIGH$ 
;to see if this is the first program in 
;high memory 
;If it is, then we can recover the space 
;Call the @HIGH$ svc 
;Move HIGH$ up by one byte 
;Take the address of our module 
;and store it here 
;Compare these 
;Are they the same? 

JR NZ,CANT ;No, the high memory module can't be removed 

At this point, we know it is ok to reclaim the memory used by the 
high memory task. 

LO HL, (IX+2) 

LD B • Jl 
LO A,@HIGH$ 
RST 28H 

LO HL,OK 
LO A,@DSPLY 
RST 28H 

LD A,@EXIT 
RST 28H 

Here we will display 
the scheduler table, 
used. 

LO HL,RECLM 
LD A,@DSPLY 
RST 28H 

LD A,@EXIT 
RST 28H 

Messages 

DEFM 'Task placed 
DEFB JlDH 
DEFM 'Task removed 
DEFB )JOH 
DEFM 'Task removed 

;Read the end of module value out of the 
;header information 
;Update the HIGH$ value 

;Call the @HIGH$ SVC 

;Point to a message saying all is well 
;and print it 
;Call the @DSPLY SVC 

;Exit the main program 
;Call the @EXIT SVC 

a message saying we removed the task from 
but we cannot reclaim the memory that was 

in 

;Point to the message 
;and display it 
;Call the @DSPLY SVC 

;Now exit 
;Call the @EXIT SVC 

high memory and scheduled. • 

from scheduler table and memory reclaimed. 

from scheduler table, but memory could not 

Software 180 

' 

' 

• 

C 

• 



• 

/1112/14 
/1/12/15 
/1/12/16 
/lll2/17 
/1/12/18 
/1/12/19 
/1/121/1 
11/1211 
11/1212 
/1/1213 
11/1214 
11/1215 
/1/1216 
/1/1217 
11/1218 
Jl/1219 
ll/l22/l 
Jl/1221 
/1/1222 
/1/1223 
/1/1224 
Jl/1225 
ll/l226 
)!)!227 
J!Jl228 
/1/1229 
/1/123/1 
Jl/1231 
/1/12 32 
/lll233 
/1/1234 
/1)!235 
/1/12 36 
/l/J237 
Jl/1238 
1111239 
Jl/124/1 
11/1241 
1111242 
Jlll243 
)!11244 
llll2 45 
1111246 
11112 4 7 
llll248 
Jlll249 
/1112511 
)!)!251 
)!)!252 
Jlll253 
Jlll254 
)!11255 
)!)!256 
Jl/1257 
)!)!258 
)!)!25 9 
)!)!26)! 
)!11261 
)!)!262 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

DEFM 
DEFB 

Sample Program F, continued 

'be recovered. 
/IDH 

The Task begins at this point. This part of the program loads 
in low memory but is relocated to a point just below HIGH$. 

This is the Memory Header Block. This block of data allows 
the system to locate this module in memory by name, 
using the @GTMOD svc. 

MODULE: JR 
ENDADD: DEFW 

DEFB 
MODNAM: DEFM 

MODTCB: DEFW 

DEFW 

ENTRY 
Jl 

MODTCB-MODNAM 
'UPTIME' 

Jl 

;Jump (relative) to the starting address 
;The highest address in the program. 
;This value is patched in before the program 
;is relocated. This will be used 
;later in recovering the memory used by 
;this task. 
;Number of bytes in the name field below. 
;This is the name of the module and is 
:used to identify the module. 
;Actual address to start execution. This 
;value is patched in after the program is 
;relocated. 
;Spare system pointer - RESERVED 

This area contains data used by the task. It is addressed using 
the IX register which points to the task when it is executed. 

COUNTER:DEFW 
DATBUF: DEFS 

Jl 
9 

;Count of how many times we have run 
;The date is stored here 

This is the actual task. 
On entry to the task, IX points at the Task Control Block CTCB), 
which in this program is the label 'MODTCB'. All data is 
referenced by indexing from that address. 

ENTRY: PUSH IY ;Save this register. It is not saved by 
;the Task Scheduler, and we use it. 
;Registers AF, BC, OE, and HL are saved 

Now we will read the current date. 

LO HL,IX ;Get a copy of the index pointer 
LO BC,DATBUF-MODTCB;Get the offset needed to access the date 
.ADD HL,BC ;Now we have a pointer to the date 

PUSH 
PUSH 
LD 
RST 

LD 

POP 
PUSH 
LD 

CALLR 
PUSH 
PUSH 
PUSH 
LD 
RST 
LD 

IX 
HL 
A,@DATE 
28H 

(HL) ,Jl 

DE 
DE 
HL,Jl/128H 

WRITE 
HL 
BC 
AF 
A,@WHERE 
28H 

;Save the pointer to the start of the task 
;Save a copy of that pointer 
;Ask the system what the date is 
;Call the @DATE SVC 

;Terminate the date string 

;Put pointer to the date here 
;We will use this pointer later on 
;Put the cursor on the top line, 
;specified in register HL 
;at the 41st position on the screen 
;Write the message at the position 
;Save the registers we damage 
;Save it 
;Save it 
;Get our current address 
,call the @WHERE SVC 

BC,3+1+1+1+1+2 ;Get the lengths of the instructions after 
;the SVC. This will allow the subroutine 
;to return to the correct address. 

Software 181 



+ 
+ 
+ 
+ 
+ 
l!/J263 
l!/J264 
jJjJ265 
jJjJ266 
jJjJ267 
jJjJ268 
jJjJ269 
jJjJ27jJ 
jJjJ271 
jJjJ272 
jJjJ273 
jJjJ274 
jJjJ275 
jJjJ276 
jJjJ2 7 7 
l!/J278 
l!/J279 
l!/J28jJ 
jJjJ281 
jJjJ28 2 
jJjJ283 
jJjJ28 4 
jJjJ285 
jJjJ286 
jJjJ287 
jJjJ288 
jJjJ28 9 
jJjJ2 9jJ 
jJjJ291 
l!/J292 
l!/J293 
jJjJ294 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
jJjJ2 95 
jJjJ296 
jJjJ297 
jJjJ2 98 
jJjJ299 
jJjJ3jJjJ 
jJjJ3jJl 
jJjJ3jJ2 
,0jJ3jJ3 
jJjJ3jJ 4 
jJjJ3jJS 
jJjJ3jJ6 
jJjJ3jJ7 
jJjJ3jJ8 
jJjJ3jJ9 
jJjJ3ljJ 
jJjJ311 
jJjJ312 

WRITE: 

TSKLP: 

ADD 
POP 
POP 
EX 
JR 

Sample Program F, continued 

HL,BC 
AF 
BC 
(SP) ,HL 
WRITE 

;Add that offset to where we are 
;Put stack back 
;Restore registers 
;Put return address on stack and restore HL 
;Jump to the subroutine 
;Note that the above was actually a macro 
;which performs a relative call. 

This part of the task displays a count of the number of times 
the task has been executed. 

POP 
POP 

PUSH 
LD 

LD 
ADD 
LD 
LD 
LD 
INC 
LD 
LD 

LD 
RST 

XOR 
LD 

POP 
LD 

CALLR 
PUSH 
PUSH 
PUSH 
LD 
RST 
LD 

ADD 
POP 
POP 
EX 
JR 

DE ;Get the pointer to DATBUF back 
IX ;Get the pointer to the beginning of 

;this task 
DE ;Save the pointer to DATBUF again 
BC,COUNTER-MODTCB ;Get the offset to our data 

HL,IX 
HL,BC 
IY,HL 
L, (IY) 
H,(IY+l) 
HL 
( IY) ,L 
<IY+l),H 

A,@HEXDEC 
28H 

A 
(DE) ,A 

DE 
HL,,0jJ36H 

WRITE 
HL 
BC 
AF 
A,@WHERE 
28H 
BC,3+1+1+1+1+2 

HL,BC 
AF 
BC 
(SP) ,HL 
WRITE 

;area 
;Put a copy of the base address in HL 
;Add offset. Now HL points to COUNTER: 
;Put the pointer to COUNTER in IY 
;Get LSB of the counter 
;Get MSB of the counter 
;Increment the number of times we have run 
;Store the LSB of the counter 
;Store the MSB of the counter 

;Convert the count to decimal 
;Call the @HEXDEC SVC 

;Get a zero 
;Terminate the count string 

;Put pointer to date here 
;Put the cursor on the top line, 
;specified in register HL 
;at the 55th position on the screen 
;Write the message at the position 
;Save the registers we damage 
;Save it 
;Save it 
;Get our current address 
,call the @WHERE SVC 
;Get the lengths of the instructions after 
;the SVC. This will allow the subroutine 
;to return to the correct address. 
;Add that offset to where we are 
; Put stack back 
;Restore registers 
;Put return address on stack and restore HL 
;Jump to the subroutine 
;Note that the above was actually a macro 
;which performs a relative call. 

Now we restore the IY register and return to the task scheduler. 

POP 
RET 

IY ;Restore IY value 
;Return to the task scheduler 

This routine places characters on the display using the @VDCTL 
svc instead of @DSP or @DSPLY. This allows the cursor to 
remain at its current position when we write to the screen. 
This routine must be called using the relocatable call macro 
CALLR. 

LD 

LD 

B,2 

A, !DE) 

;Put character on the display 

;Get a character to display 

Software 182 

• 

C 

• 



,ll,11313 
,ll,11314 
,ll,11315 
,ll,11316 
,ll,11317 
,ll,11318 
,ll,11319 
,ll,1132,ll 
,ll,11321 
,ll,11322 
,ll,11323 
,ll,ll324 
.llliJ325 
,llliJ326 
,ll,11327 
,ll,11328 
,llliJ329 

OR 

RET 
PUSH 
PUSH 
PUSH 
LD 
LD 
RST 
POP 
POP 
POP 
INC 
INC 
JR 

MODEND: END 

Sample Program F, continued 

A 

z 
HL 
DE 
BC 
C,A 
A,@VDCTL 
28H 
BC 
DE 
HL 
L 
DE 
TSKLP 

BEGIN 

;Is it time to stop putting this on 
;the display? 
;Yes, return to the caller 
;Save the registers, as the SVC will 
;alter the contents 

;Put the character here 
;Put character on screen at specified position 
,call the @VDCTL SVC 
;Restore registers 

;Advance display position 
;Point to next character to display 
;Loop till date is completely displayed 

;End of task and main program 

Software 183 



jJjJjJjJl 
1616/6/62 
1616/6/63 
1616/6/64 
jJjJjJ/65 
1616/6/66 
1616/6/67 
1616/6/68 
1616/6/69 
161616116 
jJjJjJU 
1616/612 
jJjJjJl 3 
1616/614 
1616/615 
1616/616 
1616/617 
1616/618 
jJjJjJl 9 
1616/62/6 
1616/621 
1616/622 
1616/623 
1616/624 
1616/625 
1616/626 
1616/627 
1616/628 
1616/629 
1616/6316 
16/6/631 
16/6/632 
1616/633 
1616/634 
16/6/635 
1616/636 
1616/637 
1616/638 
1616/639 
1616/64/6 
16161641 
1616/642 
1616/643 
1616/644 
1616/645 
1616/646 
1616/647 
161616 4 8 
1616/649 
16/6/6516 
1616/651 
16/6/652 
16/6/653 
16/6/654 
1616/655 
16/6/656 
16/6/65 7 
1616/658 
16/6/659 
16/6166/6 
1616/661 
1616/662 
1616/663 
1616/664 
16/6/665 
1616166 6 
1616/667 
1616/668 

: 

: 

; 
@EXIT: 
@DSPLY: 
@FLAGS: 
@DODIR: 
@KEYIN: 
@CMNDI: 

Sample Program G 

This program is a sample Extended Command Inte:preter. You 
may make the ECI as large or small as you require. You may 
use allof main memory, or you can restrict yourself to the 
system overlay area Cx'26Jg• to x'2FFF'). 
To pass a command to the normal system interpreter for 
processing, use the @CMNDI svc. TRSDOS executes the command 
and reloads the ECI. If you want to have multiple entry 
points, Bits 2 - gin EFLAG$ are in Register A on entry 
(in Bits 6 - 4),or you may read EFLAG$ yourself. 
EFLAG$ is totally dedicated to the ECI, and may contain any 
non-zero value. If EFLAG$ contains a zero, TRSDOS uses its 
own interpreter. Other programs that want to activate an ECI, 
should set the EFLAG$ to a non-zero value and execute a @EXIT 
SVC. 

To install an ECI, use the command: 
COPY filename SYS13/SYS.LSIDOS:d (C=N) 

If you omit the C=N option, the SYS13 file loses it's "SYS" 
status and you will receive 'Error j7' messages when you try 
to use it as a ECI. 

When SYSl (the normal command interpreter) has completed it's 
normal housekeeping and is about to display the "TRSDOS Ready" 
prompt, it checks EFLAG$. If EFLAG$ contains a non-zero 
value, TRSDOS loads and executes the Extended Command 
Interpreter. 
To execute this program, type <*><Enter>. 

This program checks EFLAG$ to see if it is zero. If so, it 
sets it to a non-zero value. This causes this program to be 
used instead of the normal interpreter when you execute an 
@EXIT or @ABORT SVC. (@CMNDI and @CMNDR invoke the TRSDOS 
interpreter.) If EFLAG$ is non-zero, the ECI displays a few 
prompts and the names of all visible /CMD files on logical 
Drive jJ. 
The operator may then type the name of a program to execute. 

If you press <Break>, this program sets EFLAG$ to j, executes 
an @EXIT SVC and returns to TRSDOS Ready. 

By pressing a number, g through 7, you can specify the drive 
that TRSDOS searches. This program stores this value in 
EFLAG$. Each time this program is invoked, it reads the value 
from EFLAG$ and uses that drive. 

Note that if a drive is not enabled, not formatted, doesn't 
exist, or contains no visible /CMD files, this program 
redisplays the prompt. 

PRINT 

PSECT 

Declare 
This is 
follow. 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 

SHORT,NOMAC 

3/6/6/68 ;This program starts at x•3ggg• 

the equates for the SVCs used. 
not mandatory, but it makes the program easier to 

22 
ljJ 
llll 
34 
9 
24 

;Exit and return to TRSDOS 
;Display a string 
;Locate the system flag area 
;Get the names of filenames 
;Accept a command and allow editing 
;Execute a command (using SYSl) 

On entry, determine if EFLAG$ is set to zero or not. If it 
is set to zero, this program is being started by typing 
PROGRAM<Enter> or <*><Enter>. In that case, set EFLAG$ to a 
non-zero value so that in future, TRSDOS uses this interpreter 
instead of it's own. 

Software 184 

• 

0 

• 



J 

., 

IHHJ69 
111/lJ?ll 
J;IJ;lll71 
J;IJ;ll/72 BEGIN: 
area 
JI lll/7 3 
lllfl/74 
lllll/7 5 
lllll/76 
lllll/77 
lllll/7 a 
JIJ;ll/79 
Jlllll8ll 
Jll/Jl81 
J;IJ;lll82 
J;IJ;lll83 
lllll/84 
JIJJ;lll85 
J;IJ;lll86 
Jllll/87 
lli/l/88 
lllll/89 
lllll/911 
Jlllll91 
Jlllll92 
11111193 
JIJlll94 
llllll95 
IIJlll96 
Jlllll97 
JIJlll98 
Jll/Jl99 
lllllllll 
Jllll/ll 
J;llll/,l 2 
J;IJl1Jl3 
JIJllll 4 
ll /lll/5 
J;lllll/6 
J;IJ;ll/,l7 
JIJ;ll/,l8 
JIJ;ll/,l9 
Jl/111/,l 
J;f Jll 11 
JIJ1112 
Jll/113 
J;lllll4 
J;IJl115 
Jll/116 
Jll/11 7 
J;IJ1118 
lll/119 
lllll2JI 
lll/121 
Jll/122 
Jll/123 
l1Jll24 
Jllll25 
Jlll126 
lll/127 
Jll/128 
Jll/129 
JIJl1311 
ll/ll31 
lll/132 
JIJl133 
J;IJl134 
lll/135 
JIJl136 

ECIRUN: 
ECIGO: 

ASK: 

Sample Program G, continued 
If £FLAG$ is non-zero, this initialization has already been 
done and can be skipped. 

LD 

RST 

LD 
OR 
JR 

LD 

LD 
LD 
JR 

A,@FLAGS 

28H 

A, CIY+4) 
A 
NZ,ECIRUN 

A,8 

(IY+4) ,A 
HL,PROMPT 
ECIGO 

;Get the startinq address of the flag 

;Call the @FLAGS SVC 

;Read the EFLAG$ (ECI flag) 
;Is it set to zero? 
;Run the ECI 

;Get a non-zero value. The value 
;needs to be a non-zero value that 
;does not set Bits~, 1 or 2. The 
;default drive tis kept in these bits. 
;Set the EFLAG$ to a non-zero value 
;Explain how this works 
;Display message 

When the system is about to display 
TRSDOS Ready, it executes this code instead. 

LD 
LD 
RST 

HL,SPROMPT 
A,@DSPLY 
28H 

;Point at the prompt to use 
;Display the prompt 
;Call the @DSPLY SVC 

Display the names of all /CMD files 

LD 
AND 
LD 
LD 
LD 
LD 
RST 

A,(IY+4) 
7 
C,A 
A,@DODIR 
B,2 
HL,CMDTXT 
28H 

;Get the EFLAG$ 
;Delete all but the drive number field 
;Store the drive number for the svc 
;Do a directory display 
;Display visible, non-system files 
;that match "CMD" (stored at CMDTXT) 
,call the @DODIR SVC 

Prompt for a filename or a function key. 

LD 
LD 
LD 
LD 
RST 

JR 

LD 
LD 

CP 
JR 

SUB 
CP 
JR 

HL,BUFFER 
B,9 
C' JI 
A,@KEYIN 
28H 

C,QUIT 

HL,BUFFER 
A,CHL) 

IIDH 
Z,ASK 

'II' 
7+1 
NC,NAME 

;Point at text buffer 
;Allow up to 8 characters and <Enter> 
;Required by the SVC 
;Input text with edit capability 
;Call the @KEYIN svc 

;The carry flag is set when the 
;operator presses <BREAK>. Zero the 
;EFLAG$ and exit to TRSDOS 

;Point at the start of the buffer 
;Get the character 

;Did they type anything? 
;No, just repeat the prompt. 
;If you want to redisplay the 
;directory, change "ASK" to ·ECIRUN". 

;Convert value to binary 
;Is the character a j - 7? 
;Must be a filename 

The operator has typed 1 or more characters that start with 
a number. This program assumes that the operator is defining 
a new drive number and stores this value in EFLAG$ for 
future use. TRSDOS does not alter this value. 
The next time this program is run, EFLAGS contains the 
same value and this program knows what drive to scan. 

LD 
LD 

B,A 
A,(IY+4) 

;Save the drive number 
; Get the EFLAG$ 

Software 185 



Jllll37 
Jllll38 
Jllll39 
Jllll4Jl 
Jllll41 
Jllll42 
Jllll43 
Jllll44 
Jlll145 
Jllll46 
Jllll 4 7 
Jllll48 
Jllll49 
Jllll 5 Jl 
Jl/llSl 
Jllll52 
Jllll53 
Jllll54 
Jllll55 
Jllll56 
Jllll57 
Jllll58 
Jl/1159 
/1/116/1 
11/1161 
Jl/1162 
//Jll63 
/1/1164 
EFLAG$. 
/1/1165 
/1/1166 
/1/1167 
//Jll68 
Jl/1169 
Jl/11 7/1 
/1/1171 
Jllll 7 2 
Jl/1173 
/1/1174 
/1/1175 
Jl/1176 
/1/1177 
11/1178 
Jllll79 
/1/1179 
Jllll8/I 
11/1181 
Jl/1182 
/1/1183 
Jl/1184 
//Jll85 
/1/1186 
/1/1187 
/1/1188 
/1/1189 
//Jl19/I 
/1/1191 

/1/1192 
Jl/119 3 

11/1194 
/1/1195 
Jl/1196 
Jl/1197 

/1/1198 
/1/1199 
/1/12/l/l 

QUIT: 

Sample Program G, continued 
AND 
OR 
LD 
JR 

8 
B 
(IY+4) ,A 
ECIRUN 

The operator pressed 
TRSDOS. 
XOR 
LO 
LO 
LO 
RST 

A 
( IY+4) , A 
HL,EPROMPT 
A, @DSPLY 
28H 

LO A,@EXIT 
RST 28H 

;Delete the old drive number 
;Insert the new drive number 
;Save that value for future use 
;Scan the new drive 

<Break>. Turn off the ECI and return to 

;Get a zero 
;Set EFLAG$ to zero 
;Point at the shutdown message 
;And acknowledqe the <Break> 
;Call the @DSPLY SVC 
;Return to TRSDOS Ready 
:Call the @EXIT SVC 

The operator entered what might be a filename or a library 
command. Pass it to TRSDOS for processing. If there is an 

; error, TRSDOS is responsible for determining what the error is 
and printing a message. 
(HL already points at the start of the buffer.) 

NAME: 
FDIV: 

LO 
CP 
JR 
INC 
JR 

A, /lDH 
CHL) 
Z, FOUND 
HL 
FDIV 

;Look for this character 
; In the command 
;Found the end of the filename 
;Move character to next byte 
;Find the divider (in this case, a SDH) 

Found the end of a filename, and add the drive number from 

Note that this program may not work properly if the operator 
supplies a drive number as part of the filename. 

FOUND: LD <HL)' f : I 

INC HL 
LD A,(IY+4) 
AND 7 
ADD A, 'Sf' 
LD (HL) ,A 
INC HL 
LD (HL) ,JlDH 
LO HL,BUFFER 
LO A,@CMNDI 

RST 28H 

;Add a drive number to the filename 
;Advance the pointer to the next byte 
;Get the EFLAG$ value 
;Delete all but the drive number 
;Convert the binary value to ASCII 
;Add that to the filename 
;Advance the pointer to the next byte 
;Write a terminator on the end 
;Point at the text entered 
;Execute the command, but do not 
;return. Since this program is the 
command processor at this time,TRSDOS 
;returns control to the beginning of 
;this module after executing the 
;command. 
:Call the @CMNDI SVC 

Messages and text storage 

PROMPT: DEFM 
DEFB 
DEFB 
DEFM 
DEFB 
DEFM 

DEFB 
DEFM 

DEFB 

SPROMPT:DEFB 
DEFM 

DEFM 
DEFB 

'[Extended Command Interpreter Is Now Operational]' 
JlAH 
JlAH 
'Press <BREAK> to use the normal interpreter, 
JlAH 
'type <Number><ENTER> to change the default drive 
number,' 
jlAH 
'or type the name of the program to run and press 
<ENTER>' 
SDH :Terminate the display 

JlAH 
'lECI On] <BREAK> to abort, n<ENTER> for new drive or 
type: I 

'program<ENTER>' 
SDH ;Terminate the message 

Software 186 

0 



• 

gg2g1 EPROMPT:DEFM 
gg2g2 DEFB 
gg2g3 
gg2g4 CMDTXT: DEFM 
gg2g5 BUFFER: DEFS 
gg2g6 
gg2g7 END 

Sample Program G, continued 
'[Extended Command Interpreter Is Now Disabled]' 
goH 

'CMD' 
11 

BEGIN 

;Allow for filename, drivespec and jOH 

;"BEGIN" is the starting address 

Software 187 



• 

,0 

• 



' • 

::1/ le\;I II ll\;CII II IIUI 11 li:lllUI I UI I I n~uv~ 
Commands and Utilities 

TRSDOS commands and utilities are covered extensively in the Disk System 
Owner's Manual. This section presents additional information of a technical 
nature on several of the commands and utilities. 

Changing the Step Rate 
The step rate is the rate at which the drive head moves from cylinder to cylinder. 
You can change the step rate for any drive by using one of the commands 
described below. 

To set the step rate for a particular drive, use the following command: 

SYSTEM (DRIVE= drive, STEP= number) 

drive is any drive enabled in the system. number can be 0, 1, 2, or 3 and rep
resents one of the following step rates in milliseconds: 

0 = 6 milliseconds 
1 = 12 milliseconds 
2 = 20 milliseconds 
3 = 30 milliseconds 

Unless it is SYSGENed, the step value you select remains in effect for the spec
ified drive only until the system is re-booted or turned off. If you use the 
SYSGEN command while the step value is in effect, then this step rate is written 
to the configuration file (CONFIG/SYS) on the disk in the drive specified by the 
SYSGEN command. 

On a new TRSDOS disk, the step rate is set to 12 milliseconds. 

To set the default bootstrap step rate used with the FORMAT utility, use the fol
lowing command: 

SYSTEM (BSTEP = number) 

number is 0, 1, 2, or 3, which correspond to 6, 12, 20, and 30 milliseconds, 
respectively. 

The value you select for number is stored in the system information sector on 
the disk in Drive 0. (On a new TRSDOS disk, the bootstrap step rate is set to 12 
milliseconds.) 

If you switch Drive 0 disks or change the logical Drive 0 with the SYSTEM 
(SYSTEM) command, the default value is taken off the new Drive 0 disk if you 
format a disk. 

You can change the bootstrap step rate for a particular FORMAT operation if 
you do not want to use the default. Specify the new value for STEP on the 
FORMAT command line as follows: 

FORMAT :drive (STEP=number) 

drive is the drive to be used for the FORMAT. number is 0, 1, 2, or 3, which cor
respond to 6, 12, 20, and 30 milliseconds, respectively. 

The step rate is important only if you will be using the disk in Drive 0 to start up 
the system. Keep in mind that too low a step rate may keep the disk from 
booting. 

Software 189 



Changing the WAIT Value 
The WAIT parameter compensates for hardware incompatibility between cer
tain disk drives. The only time you should use it is when a// tracks above a cer
tain point during a FORMAT operation are shown as locked out when the 
FORMAT is verified. 

The value assigned to WAIT signifies the amount of time between the arrival of 
the drive head at the location for a read or write, and the actual start of the read 
or write. 

If you want to change the WAIT value, specify the new value on the FORMAT 
command line as follows: 

FORMAT :drive (WAIT= number) 

number is a value between 5000 and 50000. The exact value depends on the 
particular disk drive you are using. We recommend that you use a value around 
25000 at first. Adjust this value higher if tracks are still locked out, or lower until 
the bottom limit is determined. 

Logging in a Diskette 
LOG is a utility program that logs in the directory track, number of sides, and 
density of a diskette. The syntax is: 

LOG :drive 

drive is any drive currently enabled in the system. 

The LOG utility provides a way to log in diskette information and update the 
drive's Drive Code Table (OCT). It performs the same log-in function as the 
DEVICE library command, except for a single drive rather than all drives. It also 
provides a way to swap the Drive 0 diskette for a double-sided diskette. 

The LOG :0 command prompts you to switch the Drive 0 diskette. You must use 
this command when switching between double- and single-sided diskettes in 
Drive 0. Otherwise, it is not needed. 

Example 

If you want to switch disks in Drive 0, type: 

LOG : 0 IENTERI 

The system prompts you with the message: 

Exchange disKs and hit <ENTER> 

Remove the current disk from Drive 0 and insert the new system disk. When 
you press~. information about the new disk is entered to the system. 

Printing Graphics Characters 
If your printer is capable of directly reproducing the TRS-80 graphics charac
ters, you can use the SYSTEM (GRAPHIC) command. Once you have issued 
this command, any graphics characters on the screen will be sent to the line 
printer during a screen print. (Pressing ICTRLIGJ causes the contents of the 
video display to be printed on the printer.) 

Do not use this command unless your printer is capable of directly reproducing 
the TRS-80 graphics characters. 

Software 190 

C 



I 

-, 
\ 

Changing the Clock Rate 
The system normally runs at the fast clock rate of 4 megahertz. 

A slow mode of 2 megahertz is available, and may be necessary for real time
dependent programs. (This slow rate is the same as the Model Ill clock rate.) 

To switch to the slow rate, enter the following command: 

SYSTEM (SLOW) 

To switch back to the fast rate, enter: 

SYSTEM (FAST) 

Software 191 



0 



i 

' ., 

Appendix A/TRSDOS Error Messages 
If the computer displays one of the messages listed in this appendix, an oper
ating system error occurred. Any other error message may refer to an applica
tion program error, and you should check your application program manual for 
an explanation. 

When an error message is displayed: 

• Try the operation several times. 

• Look up operating system errors below and take any recommended 
actions. (See your application program manual for explanations of appli
cation program errors.) 

• Try using other diskettes. 

• Reset the computer and try the operation again. 

• Check all the power connections. 

• Check all interconnections. 

• Remove all diskettes from drives, tum off the computer, wait 15 seconds, 
and turn it on again. 

• If you try all these remedies and still get an error message, contact a 
Radio Shack Service Center. 

Note: If there is more than one thing wrong, the computer might wait until you 
correct the first error before displaying the second error message. 

This list of error messages is alphabetical, with the binary and hexadecimal 
error numbers in parentheses. Following it is a quick reference list of the mes
sages arranged in numerical order. 

Attempted to read locked/deleted data record (Error 7, X'07') 

In a system that supports a "deleted record" data address mark, an attempt was 
made to read a deleted sector. TRSDOS currently does not use the deleted 
sector data address mark. Check for an error in your application program. 

Attempted to read system data record (Error 6, X'06') 

An attempt was made to read a directory cylinder sector without using the 
directory read routines. Directory cylinder sectors are written with a data 
address mark that differs from the data sector's data address mark. Check for 
an error in your application program. 

Data record not found during read (Error 5, X'05') 

The sector number for the read operation is not on the cylinder being refer
enced. Either the disk is flawed, you requested an incorrect number, or the cyl
inder is improperly formatted. Try the operation again. If it fails, use another 
disk. Reformatting the old disk should lock out the flaw. 

Data record not found during write (Error 13, X'0D') 

The sector number requested for the write operation cannot be found on the 
cylinder being referenced. Either the disk is flawed, you requested an incorrect 
number, or the cylinder is improperly formatted. Try the operation again. If it 
fails, use another disk. 

Device in use (Error 39, X'27') 

A request was made to REMOVE a device (delete it from the Device Control 
Block tables) while it was in use. RESET the device in use before removing it. 

Software 193 



Device not available (Error 8, X'88') 

A reference was made for a logical device that cannot be found in the Device 
Control Block. Probably, your device specification was wrong or the device 
peripheral was not ready. Use the DEVICE command to display all devices 
available to the system. 

Directory full - can't extend file (Error 38, X'1 E') 

A file has all extent fields of its last directory record in use and must find a spare 
directory slot but none is available. (See the "Directory Records" section.) Copy 
the disk's files to a newly formatted diskette to reduce file fragmentation. You 
may use backup by class or backup reconstruct to reduce fragmentation. 

Directory read error (Error 17, X'11') 

A disk error occurred during a directory read. The problem may be media, hard• 
ware, or program failure. Move the disk to another drive and try the operation 
again. 

Directory write error (Error 18, X'12') 

A disk error occurred during a directory write to disk. The directory may no 
longer be reliable. If the problem recurs, use a different diskette. 

Disk space full (Error 27, X'1 B') 

While a file was being written, all available disk space was used. The disk con
tains only a partial copy of the file. Write the file to a diskette that has more avail· 
able space. Then, REMOVE the partial copy to recover disk space. 

End of file encountered (Error 28, X'1 C') 

You tried to read past the end of file pointer. Use the DIR command to check the 
size of the file. This error also occurs when you use the @PEOF supervisor call 
to successfully position to the end of a file. Check for an error in your application 
program. 

Extended error (Error 63) 

An error has occurred and the extended error code is in the HL register pair. 

File access denied (Error 25, X'19') 

You specified a password for a file that is not password protected or you spec
ified the wrong password for a file that is password protected. 

File already open (Error 41, X'29') 

You tried to open a file for UPDATE level or higher, and the file already is open 
with this access level or higher. This forces a change to READ access protec
tion. Use the RESET library command to close the file. 

File not in directory (Error 24, X'18') 

The specified filespec cannot be found in the directory. Check the spelling of 
the filespec. 

File not open (Error 38, X'26') 

You requested an 1/0 operation on an unopened file. Open the file before 
access. 

GAT read error (Error 28, X'14') 

A disk error occurred during the reading of the Granule Allocation Table. The 
problem may be media, hardware, or program failure. Move the diskette to 
another drive and try the operation again. 

GAT write error (Error 21, X'15') 

A disk error occurred during the writing of the Granule Allocation Table. The 
GAT may no longer be reliable. If the problem recurs, use a different drive or 
different diskette. 

Software 194 

0 



i 

• 

HIT read error (Error 22, X'16') 

A disk error occurred during the reading of the Hash Index Table. The problem 
may be media, hardware, or program failure. Move the diskette to another drive 
and try the operation again. 

HIT write error (Error 23, X'17') 

A disk error occurred during the writing of the Hash Index Table. The HIT may 
no longer be reliable. If the problem recurs, use a different drive or different 
diskette. 

Illegal access attempted to protected flle (Error 37, X'25') 

The USER password was given for access to a file, but the requested access 
required the OWNER password. (See the ATTRIB library command in your 
Disk System Owner's Manual.) 

Illegal drive number (Error 32, X'211') 

The specified disk drive is not included in your system or is not ready for access 
(no diskette, non-TRSDOS diskette, drive door open, and so on). See the 
DEVICE command in your Disk System Owner's Manual.) 

Illegal file name (Error 19, X'13') 

The specified filespec does not meet TRSDOS filespec requirements. See your 
Disk System Owner's Manual for proper filespec syntax. 

Illegal logical file number (Error 16, X'1 II') 

A bad Directory Entry Code (DEC) was found in the File Control Block (FCB). 
This usually indicates that your program has altered the FCB improperly. Check 
for an error in your application program. 

Load file format error (Error 34, X'22') 

An attempt was made to load a file that cannot be loaded by the system loader. 
The file was probably a data file or a BASIC program file. 

Lost data during read (Error 3, X'll3') 

During a sector read, the CPU did not accept a byte from the Floppy Disk Con
troller (FDC) data register in the time allotted. The byte was lost. This may indi
cate a hardware problem with the drive. Move the diskette to another drive and 
try again. If the error recurs, try another diskette. 

Lost data during write (Error 11, X'IIB') 

During a sector write, the CPU did not transfer a byte to the Floppy Disk Con
troller (FDC) in the time allotted. The byte was lost; it was not transferred to the 
disk. This may indicate a hardware problem with the drive. Move the diskette to 
another drive and try again. If the error recurs, try another diskette. 

LAL open fault (Error 42, X'2A') 

The logical record length specified when the file was opened is different than 
the LAL used when the file was created. COPY the file to another file that has 
the specified LAL. 

No device space available (Error 33, X'21') 

You tried to SET a driver or filter and all of the Device Control Blocks were in 
use. Use the DEVICE command to see if any non-system devices can be 
removed to provide more space. This error also occurs on a "global" request to 
initialize a new file (that is, no drive was specified), if no file can be created. 

No directory space available (Error 26, X'1 A') 

You tried to open a new file and no space was left in the directory. Use a differ
ent disk or REMOVE some files that you no longer need . 

Software 195 



No error (Error 8) 

The @ERROR supervisor call was called without any error condition being 
detected. A return code of zero indicates no error. Check for an error in your 
application program. 

Parameter error (Error 44,X'2C') 

(Under Version 6.2 only) An error occurred while executing a command line or 
utility because a parameter that does not exist was specified. Check the spell• 
ing of the parameter name, value, or abbreviation. 

Parity error during header read (Error 1, X'81') 

During a sector 1/0 request, the system could not read the sector header suc
cessfully. If this error occurs repeatedly, the problem is probably media or hard· 
ware failure. Try the operation again, using a different drive or diskette. 

Parity error during header write (Error 9, X'89') 

During a sector write, the system could not write the sector header satisfactor
ily. if this error occurs repeatedly, the problem is probably media or hardware 
failure. Try the operation again, using a different drive or diskette. 

Parity error during read (Error 4, X'84') 

An error occurred during a sector read. Its probable cause is media failure or a 
dirty or faulty disk drive. Try the operation again, using a different drive or 
diskette. 

Parity error during write (Error 12, X'8C') 

An error occurred during a sector write operation. Its probable cause is media 
failure or a dirty or faulty disk drive. Try the operation again, using a different 
drive or diskette. 

Program not found (Error 31, X'1 F') 

The file cannot be loaded because it is not in the directory. Either the filespec 
was misspelled or the disk that contains the file was not loaded. 

Protected system device (Error 48, X'28') 

You cannot REMOVE any of the following devices: *Kl, *DO, *PR, • JL, *SI, •so. 
If you try, you get this error message. 

Record number out of range (Error 29, X'1 D') 

A request to read a record within a random access file (see the @POSN super
visor call) provided a record number that was beyond the end of the file. Correct 
the record number or try again using another copy of the file. 

Seek error during read (Error 2, X'82') 

During a read sector disk 1/0 request, the cylinder that should contain the sec
tor was not found within the time allotted. (The time is set by the step rate spec
ified in the Drive Code Table.) Either the cylinder is not formatted or it is no 
longer readable, or the step rate is too low for the hardware to respond. You can 
set an appropriate step rate using the SYSTEM library command. The problem 
may also be caused by media or hardware failure. In this case, try the operation 
again, using a different drive or diskette. 

Seek error during write (Error 18, X'8A') 

During a sector write, the cylinder that should contain the sector was not found 
within the time allotted. (The time is set by the step rate specified in the Drive 
Code Table.) Either the cylinder is not formatted or it is no longer readable, or 
the step rate is too low for the hardware to respond. You can set an appropriate 
step rate using the SYSTEM library command. The problem may also be 
caused by media or hardware failure. In this case, try the operation again, using 
a different drive or diskette. 

Software 196 

0 



,.--._ 

_,I 

- Unknown error code 

The @ERROR supervisor call was called with an error number that is not 
defined. Check for an error in your application program. 

Write fault on disk drive (Error 14, X'IIE') 

An error occurred during a write operation. This probably indicates a hardware 
problem. Try a different diskette or drive. If the problem continues, contact a 
Radio Shack Service Center. 

Write protected disk (Error 15, X'IIF') 

You tried to write to a drive that has a write-protected diskette or is software 
write-protected. Remove the write-protect tab, if the diskette has one. If it does 
not, use the DEVICE command to see if the drive is set as write protected. If it 
is, you can use the SYSTEM library command with the (WP= OFF) parameter 
to write enable the drive. If the problem recurs, use a different drive or different 
diskette. 

Numerical List of Error Messages 
Decimal Hex Message 

0 X'00' No Error 
1 X'01' Parity error during header read 
2 X'02' Seek error during read 
3 X'03' Lost data during read 
4 X'04' Parity error during read 
5 X'05' Data record not found during read 
6 X'06' Attempted to read system data record 
7 X'07' Attempted to read locked/deleted data record 
8 X'08' Device not available 
9 X'09' Parity error during header write 

10 X'0A' Seek error during write 
11 X'0B' Lost data during write 
12 X'0C' Parity error during write 
13 X'0D' Data record not found during write 
14 X'0E' Write fault on disk drive 
15 X'0F' Write protected disk 
16 X'10' Illegal logical file number 
17 X'11' Directory read error 
18 X'12' Directory write error 
19 X'13' Illegal file name 
20 X'14' GAT read error 
21 X'15' GAT write error 
22 X'16' HIT read error 
23 X'17' HIT write error 
24 X'18' File not in directory 
25 X'19' File access denied 
26 X'1A' No directory space available 
27 X'1B' Disk space full 
28 X'1C' End of file encountered 
29 X'1D' Record number out of range 
30 X'1E' Directory full-can't extend file 
31 X'1F' Program not found 
32 X'20' Illegal drive number 
33 X'21' No device space available 
34 X'22' Load file format error 
37 X'25' Illegal access attempted to protected file 
38 X'26' File not open 
39 X'27' Device in use 
40 X'28' Protected system device 

Software 197 



41 
42 
43 
44 
63 

X'29' 
X'2A' 
X'2B' 
X'2C' 
X'3F' 

File already open 
LRL open fault 
SVC parameter error 
Parameter error 
Extended error 
Unknown error code 

Software 198 

C 



i 

_; 

Appendix B/Memory Map 

I 

I 
I 

I 

I 
I 

I 

'2400H 

Resident operating system, system 
buffers, overlays, drivers, etc. 

2600H ___ > 
3000

H Library overlay zone 

Note: 2400H to 2600H is 
reserved for possible future 
expansion of the resident 
operating system area. 

OPTIONAL I BANK 1 SYSTEM BANK 
64K MEMORY \ 32K 1--B'-A_N_K-

2
--+-;:;.B.c...A;:...N;.;:K;:...

0
c;...;:.;..;;.;.;...;..--1 32K 

\ 
\ 
\ 
\ 

\ 
\ 

\ 
\ 
\ 

~KL_ ____ JDIDIIlE Itlllllllll HIGH$ 
64K 

All software must observe HIGH$. 

User software which does not allow TRSDOS library commands to be executed 
during run time may use memory from 2600H to HIGH$. 

User software which allows for library commands during execution must reside 
in and use memory only between 3000H and HIGH$. 

TRSDOS provides all functions and storage through supervisor calls. No 
address or entry point below 3000H is documented by Radio Shack. 

Software 199 



~ 0 



i 

., 

Appendix C/Character Codes 
Text, control functions, and graphics are represented in the computer by codes. 
The character codes range from zero through 255. 

Codes one through 31 normally represent certain control functions. For exam
ple, code 13 represents a carriage return or "end of line:· These same codes 
also represent special characters. To display the special character that corre
sponds to a particular code (1-31 ), precede the code with a code zero. 

Codes 32 through 127 represent the text characters - all those letters, num
bers, and other characters that are commonly used to represent textual 
information. 

Codes 128 through 191, when output to the video display, represent 64 graphics 
characters. 

Codes 192 through 255, when output to the video display, represent either 
space compression codes or special characters, as determined by software . 

Software 201 



ASCII Character Set 
Code ASCII 

Dec. Hex. Abbrev. Keyboard Video Display 
0 00 NUL ICTRLJ@ID Treat next character as dis-

playable; if in the range 1-31, 
a special character is dis-
played (see list of special 
characters later in this 
Appendix). 

1 01 SOH <m[)(I) 
2 02 STX (m![)@ 
3 03 ETX ~© 
4 04 EOT ~(ID 
5 05 ENQ (llft[)(E) 
6 06 ACK ~ 
7 07 BEL ~ 
8 08 BS CI) Backspace and erase 

(mID@ 
9 09 HT (I) 

(ffl!D(I) 
10 0A LF s Move cursor to start of next 

(ll8[)(1) line 
11 08 VT s 

cmooo 
12 0C FF ~(D 
13 0D CR ~ Move cursor to start of next 

~00 line 
14 0E so crn!LJOO Turn cursor on 
15 0F SI (CDID@ Turn cursor off 
16 10 OLE (m[)® Enable reverse video and 

set high bit routine on* 
17 11 DC1 ~ill Set reverse video high bit 

routine off* 
18 12 DC2 ~® 0 19 13 DC3 (llft[)(I) 
20 14 DC4 <m[)(!) 
21 15 NAK ICTRLI(!!) Swap space compression/ 

special characters 
22 16 SYN ~00 Swap special/alternate 

characters 
23 17 ETB (ffl!D(I) Set to 40 characters per line 
24 18 CAN ~CI) Backspace without erasing 

ICTRLIOO 
25 19 EM ~(I) Advance cursor 

<mI)(Y) 
26 1A SUB (ll!E)S Move cursor down 

(ffl!D(Z) 
27 18 ESC ~@ Move cursor up 

~GJ 
28 1C FS ~CD Move cursor to upper left 

corner. Disable reverse 
video and set high bit rou-
tine off.* Set to 80 charac-
ters per line. 

29 1D GS (llft[)(mffl) Erase line and start over 
<m[)G) 

30 1E RS ICTRLJ(D Erase to end of line 

*When the high bit routine is on, characters 128 through 191 are displayed as • standard ASCII characters in reverse video. 

Software 202 



Code ASCII 
Dec. Hex. Abbrev. Keyboard Video Display 

31 1F VS ~~ Erase to end of display 
32 20 SPA !SPACE BARI (blank) 
33 21 CD I 
34 22 ~ 

.. 
35 23 @ # 

i 36 24 Ci) $ 
37 25 ® % 
38 26 (i) & 
39 27 Q) . 
40 28 CD ( 
41 29 (I) ) 
42 2A ® • 
43 2B (!) + 
44 2C Q) 
45 2D G 
46 2E 0 • 
47 2F Q) I 
48 30 (I) 0 
49 31 (D 1 
50 32 (2) 2 
51 33 (I) 3 
52 34 (I) 4 
53 35 (5) 5 
54 36 (I) 6 
55 37 (Z) 7 
56 38 (I) 8 
57 39 (I) 9 
58 3A CD 
59 3B (J) • 
60 3C @ < 
61 30 0 
62 3E 0 > 

J 63 3F G) ? 
64 40 @) @ 
65 41 CWEO® A 
66 42 l1!!m'.)(l) B 
67 43 Cll!IID© C 
68 44 (Wf!)(ID D 
69 45 Cll!IID([) E 
70 46 Cll!IID([) F 
71 47 (Wfl)(ID G 
72 48 l1!!m'.l® H 
73 49 ~!I) I 
74 4A <Ii!ID)Q) J 
75 4B (Wfl)OO K 
76 4C ~co L 
77 40 ~00 M 
78 4E Cll!IIDOO N 
79 4F !111ID)@ 0 
80 50 (l!ID)® p 
81 51 ~!ID Q 
82 52 <Ii!ID)(I!) R 
83 53 <Ii!fill® s 
84 54 (li!fil)(!) T 
85 55 (Iillll)(l!) u 
86 56 cmrmoo V 
87 57 cmif!)il) w ., 88 58 (l!ID)OO X 
89 59 ~00 y 

Software 203 



Code ASCII 
Dec. Hex. Abbrev. Keyboard Video Display 

90 SA ~(Z) z 
91 5B (CWID(u r 
92 5C ~CD \ 
93 5D ICLEARIG] ! 94 SE ~CD 
95 SF ~(Eml!J 
96 60 (IIIID)@ 
97 61 (I) a 
98 62 (I) b 
99 63 cm C 

100 64 (DJ d 
181 65 (El e 
182 66 (E) I 
183 67 (I) g 
104 68 (II) h 
185 69 (J) I 
106 6A (1) j 
107 6B (I) k 
108 6C (D I 
109 6D (I) m 
110 6E (I) n 
111 6F (DJ 0 
112 70 (l) p 
113 71 (D) q 
114 72 (II) r 
115 73 (I) s 
116 74 (I) t 
117 75 (11) u 
118 76 (I) V 

119 77 (I) w 
120 78 (I) X 

0 121 79 (D y 
122 7A (ZJ z 
123 7B ~(l!!m)w { 
124 7C ~~CD I 
125 7D ~~GJ } 
126 7E ©D!!J(l!!m)CD 
127 7F DEL ~~~ ± 

• 
Software 204 



Extended (non-ASCII) Character Set 
Code 

Dec. Hex. Keyboard Video Display 
128 80 ~ 
129 81 (Ill 

ICLEARIICTRLJ@ 
130 82 ~ 

~~® 
131 83 ~ 

~ICTRLI© 
132 84 ~ICTRLI@ 
133 85 ICLEARI~® 
134 86 ~©'!!L)(f) 
135 87 ~~(ID 
136 88 ~ICTRLI® 
137 89 ~~(I) x 138 BA (mRJICTRLIQ) '6 
139 8B ~JICTRLl(K) C: 

"' 140 SC ~(ffl!I)(D 0. 
0. 

141 8D ICLEARJ(ll!ID@ <( 

142 SE ~(ll!ID® 
u, 

£ 143 SF ~rmID@ .£ 
144 90 ~©'!ID® "' 145 91 (KID(Il) :c 

"' ~(ffl!I)(ID -~ 
146 92 ~(E2) i 

~~ e 
147 93 (KID~ "' ,r:; 

~(ffl!I)® 0 

148 94 ~~(!) ~ 
:c 

149 95 tmm)(ffll[)(l!) 0. 

150 96 ~~00 e 
C> -- 151 97 ~~00 "' "' ...,/ 152 98 ~<miLJOO (/) 

153 99 ~(mC)('l) 
154 9A ~~(I) 
155 9B tmm)<l!llfI)@ 
156 9C 
157 9D 
158 9E 
159 9F 
160 A0 ~~ 
161 A1 ~11!!m)(1) 
162 A2 mM)(Bfi)(I) 
163 A3 mMJ(BEI)(3) 
164 A4 ~(Bfl)@ 
165 A5 ~(SJ 
166 A6 ~(I) 
167 A7 ~IZ) 
168 AB (WM)<l!!mJ(I) 
169 A9 tmm)(BEI)(I) 
170 AA mMJ(ll!ID)(D 
171 AB 
172 AC 
173 AD tmMJG 
174 AE 
175 AF 
176 B0 mAB)(I) ., 177 B1 mAB)(I) 
178 B2 (WM)(2) 

Software 205 



Code 
Dec. Hex. Keyboard Video Display 

179 B3 ~@ .5 
180 B4 ©lM)@ .9! 
181 B5 ~® j 
182 B6 ~(ID ~ 

183 B7 ~(Z) I 184 BS ~@ 
185 B9 ~® 

., 
.s:::. 

186 BA ~GJ ~ -~ 
187 BB c., -0 

·- C: 

188 BC 
.s:::. Q) 
Q. Q. 

189 BO ~(ll!ID)G f! Q. a,< 
190 BE Q) "' Q) ·-

191 BF en £ 
192 C0 ~~· 
193 C1 ~@ .. 
194 C2 ~@ .. 
195 C3 ~© .. 
196 C4 ICLEARJ(D)° 
197 C5 ~(II·· 
198 C6 ~® .. 
199 C7 ©lai!J® .. 
200 ca ~(!!) .. 
201 C9 ~(Ir 
202 CA ~Q) .. 

~ 203 CB ~00 .. 
204 cc ~,rr g_ 
205 CD Cillal!JOO .. ~ 
206 CE ©ml® .. .!l 
207 CF ~(ID .. = 
208 00 ~® .. .5 

209 01 Cillall)(ID .. e! 
210 02 Cillall)(B) .. I 0 211 03 ~(II .. 
212 04 ~crr -fj 
213 05 ~(l!J° I 214 06 ~~r 
215 07 ~00 .. 
216 08 ~00 .. 0 
217 09 Cill!!l)(!J .. ! 218 DA ~a:r ., 
219 OB /8 
220 DC 
221 OD 
222 OE 
223 OF 
224 E0 ~~@ 
225 E1 ~~@ 
226 E2 ~CWID® 
227 E3 ~11!!IDl© 
228 E4 ~ISHIFTJ(ID 
229 E5 ~~(II 
230 E6 ~~® 
231 E7 ~Cillml® 
232 E8 ~~® 
233 E9 ~~(II 
234 EA ~~Q) 

•Empties the type-ahead buffer . • .. Used by Keystroke Multiply. if KSM is active. 

Software 206 



Code 
Dec. Hex. Keyboard Video Display 

235 EB (lliAID~OO >< 
236 EC ICLEARIISHIFTJ(l) 'o 
237 ED ICLEARl~OO 

C ., 
238 EE @D!!)(fil!fil)(ID 

a. 
a. 

239 EF (lliAID~@ ~ 
Cl) 

240 F0 ICLEARIISHIFTI® £ - 241 F1 (lliAID(fil!fil)(ID 

II .!: 
242 F2 (lliAID@!ID)(ID Cl) 

~ 

243 F3 (lliAID@!IDJ@ .Sl 
244 F4 (lliAIDOO)fil)(I) e 
245 F5 ~OO)fil)(ID 

., 
.c 

246 F6 ~~00 (.) 

oi 247 F7 ~~00 ·o 
248 F8 (lliAID~OO 

., 
a. 

249 F9 (lliAID®!ID)(Y) Cl) 

250 FA ~~ill 0 
253 FD ~ 
254 FE ., ., 
255 FF (I) 

., 
Software 207 



Graphics Characters (Codes 128-191) 

0 

Software 208 • 



Special Characters (0-31, 192-255) 

i 
£1eUA 

0 1 2 3 4 5 

8 9 10 11 12 13 

16 17 18 19 20 21 

24 25 26 27 28 29 

192 193 194 195 196 197 

200 201 202 203 204 205 ., 
Software 209 

■■ 

-, 0 
6 7 

14 

22 

30 

198 

206 

15 

23 

-. . -
31 

199 

207 



208 209 210 

216 217 218 

0.f • 
• 

224 225 226 

232 233 234 

240 241 242 

9 
248 249 250 

211 

219 

227 

235 

212 

220 

- ■ . -
228 

236 

213 214 215 

221 222 223 

229 230 231 

237 238 239 

~.:►----· Re. 
243 244 245 246 247 

251 252 253 254 255 

Software 210 

0 

• 



., 

Appendix D/Keyboard Code Map 

The keyboard code map shows the code that TRSDOS returns for each key, in 
each of the modes: control, shift, unshift, clear and control, clear and shift, clear 
and unshift. 

For example, pressing ICLEARI, ISHIFTI, and (1) at the same time returns the code 
X'Af 

A program executing under TRSDOS - for example, BASIC - may translate 
some of these codes into other values. Consult the program's documentation 
for details. 

(BREAK) Key Handling 
The ~ key (X'80') is handled in different ways, depending on the settings 
of three system functions. The table below shows what happens for each com
bination of settings. 

Break 
Break Vector 

Enabled Set 

y N 

y N 

y y 

y y 

N X 

Type
Ahead 

Enabled 
y 

N 

y 

N 

X 

If characters are in the type-ahead buffer, 
then the buffer is emptied.• 

If the type-ahead buffer is empty, then a 
BREAK character (X'80') is placed in the 
buffer.• 
A BREAK character (X'80') is placed in the 
buffer. 
The type-ahead buffer is emptied of its con
tents (if any), and control is transferred to the 
address in the BREAK vector (see @BREAK 
SVC).• 

Control is transferred to the address in the 
BREAK vector (see @BREAK SVC). 
No action is taken and characters in the type
ahead buffer are not affected. 

·Because the IBREAKI key is checked for more frequently than other keys on the 
keyboard, it is possible for IBREAKI to be pressed after another key on the key
board and yet be detected first. 

Y means that the function is on or enabled 
N means that the function is off or disabled 
X means that the state of the function has no effect 

Break is enabled with the SYSTEM (BREAK= ON) command (this is the 
default condition). 

The break vector is set using the @BREAK SVC (normally off). 
Type-ahead is enabled using the SYSTEM (TYPE= ON) command (this is the 

default condition) . 

Software 211 



f 
'Y 
"' 

81 31 82 32 83 33 84 34 85 35 86 36 87 37 88 36 89 38 Bt 39 BA tt AD 2D 80 80 
! " # $ % & ' ( ) • = B 

A1 1 21 A2 2 22 A3 3 23 A4 4 24 AS 5 25 A6 6 26 A7 7 27 AB 8 28 A9 9 29 At 0 t AA: 2A BO - 30 80 R ttt 
81 31 82 32 83 33 84 34 85 35 B6 36 B7 37 88 38 89 39 80 30 BA 3A AD 20 80 K a9 

BB es 91 11 97 17 85 es 92 12 94 14 99 19 95 15 89 99 BF 8F 99 19 • G 88 88 89 89 

9B t 1B F1 Q 51 F7 W 57 ESE 45 F2 R 52 F4 T 54 F9 y 59 FS U 55 E9 I 49 EF O 4F Ff p 58 EG@ 6G 98 +- 18 99 ➔ 19 
BB 9B D1 71 D7 77 C5 65 D2 72 D4 74 D9 79 05 75 C9 69 CF 6F D0 70 ce 48 88 08 89 09 

BA 0A 81 01 93 13 84 04 86 06 87 07 88 GB BA 8A 88 88 BC 0c 1E 1E SD 8D C 
+ ENTER 

L 
9A } E1 A F3 S E4 D E6 F E7 G EB H 48 EA J EB K 48 EC L E 1F 

1A 41 53 44 46 47 4A 4C 7E ; 2B 7F 10 A BA .. C1 61 D3 73 C4 64 cs 66 C7 67 CB 68 CA SA CB 6B cc 6C SE 38 SF ID R 
9A 1A 98 18 83 03 96 16 82 82 SE 0E SD 0D 18 1B 1D 1D 1C 1C 

SHIFT FAZ SA FB X 58 E3 C F6 V E2 B EE N 4E ED M 4D 7B ~ 70? 3E 
? SHIFT 43 56 42 3C 7C / 3F 

DA 7A DB 78 C3 63 06 76 C2 62 CE SE CD 60 SB 2C SD 2E SC 2F 
88 

C At C 
T 28 A 
R 

At p 
L A8 29 s 

The keys may be positioned differently on your keyboard. However, they produce the same codes. 
81 81 82 82 83 83 

91 Fl 91 s2 F2 02 93 F3 93 

LEGEND: 

Clear and Control • • 1 Control 

Clear and Left Shift 1 • 

Clear and Unshift • 
• I Shift 

Unshift • 

Note: Pressing CONTROL, SHIFT, and 
@ at the same time generates an 
EOF (end of file) - - X'1 C' 
with NZ return flag, 

•· 

Whenever pressing CLEAR, 
SHIFT, and another key at the 
same time, be sure to use the 
left SH I FT key - not the right 
SHIFT key, 

t Pressing SHIFT and 0 at the same 
time (or CAPS alone) turns the 
CAPS mode on or off. 

tt Pressing CONTROL and : at the 
same time causes a screen print. 

ttt Pressing SHIFT and BREAK at 
the same time reselects the last 
drive. 

0 

Codes for these keys 
are the same as for 
the main keyboard. 

81 81 82 82 83 83 

7 8 9 

4 5 6 

1 2 3 

0 • ENT 



I 

Appendix E/Programmable SVCs 
(Under Version 6.2 only) 

SVC numbers 124 through 127 are reserved for programmer installable SVCs. 
To install an SVC the programmer must write the routine to execute when the 
SVC is called. 

The routine should be written as high memory module if it is to be available at 
all times. If you execute a SYSGEN command when a programmable SVC is 
defined, the address of the routine is saved in the SYSGEN file and restored 
each time the system is configured. If the routine is a high memory module, the 
routine is saved and restored as well. This makes the SVC always available. 
For more information on high memory modules, see Memory Header and Sam
ple Program F. 

To install an SVC, the program must access the SVC table. The SVC table con
tains 128 two-byte positions, a two-byte position for each usable SVC. Each po
sition in the table contains the address of the routine to execute when the SVC 
is called. 

To access the SVC table, execute the @FLAGS SVC (SVC 101 ). IY + 26 con
tains the MSB of the SVC table start address. The LSB of the SVC table ad
dress is always 0 because the SVC table always begins on a page boundary. 

Store the address of the routine to be executed at the SVC number times 2 byte 
in the table. For example, if you are installing SVC 126, store the address of the 
routine at byte 252 in the table. Addresses are stored in LSB-MSB format. 

When the SVC is executed, control is transferred to the address in the table. On 
entry to your SVC, Register A contains the same value as Register C. All other 
registers retain the values they had when the RST 28 SVC instruction was 
executed. 

To exit the SVC, execute a RET instruction. The program should save and re
store any registers used by the SVC. 

Initially, SVCs 124 through 127 display an error message when they are exe
cuted. When installing an SVC you should save the original address at that lo
cation in the table and restore it when you remove the SVC. 

These program lines insert a new SVC into the system SVC table, save the pre
vious value of the table, and reinsert that value before execution ends. You 
could check the existing value to see if the address is above X'2600'. If it is, the 
SVC is already assigned and should not be used at this time. 

This code inserts SVC 126, called MYSVC: 

LD A,@FLAGS 
RST 28H 
LD H,(IY + 26) 
LD L,126*2 
LD (OSVC126A),HL 
LD E,(HL) 
INC HL 
LD D,(HL) 
LD (OSVC126V),DE 
DEC HL 
LD DE,MYSVC 

LD (HL),E 

INC HL 

Software 213 

;Locate start of SVC table 
;Execute @.FLAGS SVC 
;Get MSB of address 
;Want to use SVC 126 
;Save address of SVC entry 
;Get current SVC address 

;Save the old value 

;Get address of routine for 
;SVC 126 
;Insert new SVC address into 
;table 



LD (HL),D 

• Code that uses MYSVC (SVC 126) 

This code removes SVC 126: 

LD 
LD 
LD 
INC 
LD 

HL,(OSVC126A) 
DE,(OSVC126V) 
(HL),E 
HL 
(HL),D 

Software 214 

;Get address of SVC entry 
;Get original value 
;Insert original SVC address 

0 



., 

Appendix F/Using SYS13/SYS 
(Under Version 6.2 only) 

With TRSDOS Version 6.2, you can create an Extended Command Inter
preter (ECI) or an Immediate Execution Program (IEP). TRSDOS can store 
either an ECI or IEP in the SYS13 file. Both programs cannot be present at 
the same time. 

At the TRSDOS Ready prompt when you type 0 ~. TRSDOS exe
cutes the program stored in SYS13/SYS. Because TRSDOS recognizes the 
program as a system file, TRSDOS includes the file when creating backups 
and loads the program faster. 

If you want to write additional commands for TRSDOS, you can write an in
terpreter to execute these commands. Your ECI can also execute TRSDOS 
commands by using the @CMNDI SVC to pass a command to the 
TRSDOS interpreter. 

If EFLAG$ contains a non-zero value, TRSDOS executes the program in 
SYS13/SYS. If EFLAG$ contains a zero, TRSDOS uses its own command 
interpreter. 

Sample Program G is an example of an ECI. It is important to note that your ECI 
must be executable by pressing 0 IENTERI at the TRSDOS Ready prompt. 

An ECI can use all of memory or you can restrict it to use the system overlay 
area (X'2600' to X'2FFF'). 

To implement an IEP or ECI, use the following syntax: 

COPY filespec SYS13/SYS.LSIDOS:drive (C = N) IENTERI 

fi/espec can be any executable (/CMD) program file. drive specifies the desti
nation drive. The destination drive must contain an original SYS13/SYS file. 

Example 

COPY SCRIPSIT/CMD:1 SYS13/SYS.LDl:0 (C = N) 

TRSDOS copies SCRIPSIT/CMD from Drive 1 to SYS13/SYS in Drive 0. At the 
TRSDOS Ready prompt, when you press 0 ~. TRSDOS executes 
SCRIPSIT . 

Software 215 



., 0 



I 

--

., 

Index 
Subject Page Subject Page 

@ABORT ............................ 48 
Access 

device .......................... 9-10 
drive . . . . . . . . . . . . . . . . . . . . . . . . . . 11 ·21 
file ............................... 4 

@ADTSK ............................. 49 
Alien disk controller . . . . . . . . . . . . . . . . . . . . 12 
Allocation 

dynamic .......................... 3 
information .................... 12, 25 
methods of . . . . . . . . . . . . . . . . . . . . . . . . 3 
pre- .............................. 3 
unit of ............................ 2 

ASCII codes . . . . . . . . . . . . . . . . . . . . . . 202-04 
Background tasks, invoking . . . . . . . . . . 33-34 
@BANK ........................... 37-39 
Bank switching . . . . . . . . . . . . . . . . . . . . . 36-39 
@BKSP .............................. 52 
BOOT/SYS ............................ 5 
BREAK 

detection ................... 29-32, 53 
key handling ..................... 211 

@BREAK ............................. 53 
Byte 1/0 . . . . . . . . . . . . . . . . . . . . . . . . . . . 40-42 
Characters 

ASCII ........................ 202-04 
codes ........................ 201-10 
graphics ................. 205-06, 208 
special ................ 206-07, 209-10 

@CHNIO ............................. 54 
@CKDRV ............................ 55 
@CKBRKC ........................... 55 
@CKEOF ............................ 56 
@CKTSK ............................. 57 
Clock rate, changing .................. 192 
@CLOSE ............................. 60 
@CLS ............................... 61 
@CMNDI ............................. 63 
@CMNDR ............................ 64 
Codes 

ASCII . . . . . . . . . . . . . . . . . . . . . . . . 202-04 
character . . . . . . . . . . . . . . . . . . . . . 201-1 O 
error ............................ 197 
graphics ................. 205-06, 208 
keyboard ..................... 211-12 
return ............................ 28 
special character ....... 206-07, 209-10 

Converting to TRSDOS Version 6 .... 27-28 
CREATEd files . . . . . . . . . . . . . . . . . . . . . . . . 15 
@CTL ....................... 40-42, 65-66 

interfacing to device drivers ..... 42-44 
Cylinder 

highest numbered . . . . . . . . . . . . . . . . . 12 
number of . . . . . . . . . . . . . . . . . . . . . . . . 18 
position, current . . . . . . . . . . . . . . . . . . . 12 
starting . . . . . . . . . . . . . . . . . . . . . . . . . . 25 

@DATE .............................. 67 
@DCINIT ............................. 68 
@OGRES ............................ 69 
@DCSTAT ............................ 70 
DEBUG ............................... 6 
@DEBUG ............................ 71 
@DECHEX ........................... 72 
Density, double and single ......... 1, 11, 18 
Device 

access .......................... 9· 10 
handling . . . . . . . . . . . . . . . . . . . . . . . . . 27 
NIL ............................... 9 

Device Control Block (DCB) . . . . . . . . . . . . . 9 
Device driver ...................... 7, 8, 13 

address ........................... 9 
COM ......................... 43-44 
@CTL interfacing to ............ 42-44 
keyboard . . . . . . . . . . . . . . . . . . . . . . . . . 43 
printer ........................... 43 
templates . . . . . . . . . . . . . . . . . . . . . 40-42 
video ............................ 43 

Devspec ............................... 9 
Directory 

location on disk ................. 2, 12 
primary and extended entries . . . . . . . 14 

16,20 
record, locating a ................. 20 
records (DIREC) ............... 13-16 
sectors, number of . . . . . . . . . . . . . . . . 14 

Directory Entry Code (DEC) . . . . . . . . . 18-19 
20, 24 

@DIRRD ............................. 73 
DIR/SYS .............................. 5 
@DIRWR ............................. 74 
Disk, diskette 

controller . . . . . . . . . . . . . . . . . . . . . . . . . 12 
double-sided ............ 11-12, 17, 18 
files .......................... 13-14 
floppy ............................. 1 
formatting ..................... 17, 18 
hard .............................. 2 
1/0 table . . . . . . . . . . . . . . . . . . . . . . . . . 13 
minimum configuration ............. 7-8 
name ............................ 18 

Software 217 



Index 
Subject Page Subject Page 

organization ...................... 1-2 
single-sided ............. 11-12, 17, 18 
space, available ................... 2 

@DIVS ............................... 75 
@DIV16 .............................. 76 
@DODIR .......................... 77-78 
Drive 

access . . . . . . . . . . . . . . . . . . . . . . . . 11-22 
address .......................... 12 
floppy .......................... 1, 11 
hard ........................... 2, 11 
size ............................. 11 

Drive Code Table DCT .............. 11-13 
Driver - see Device driver 
@DSP ............................... 79 
@DSPLY ............................. 80 
End of File (EOF) . . . . . . . . . . . . . . . . . . . . . 15 
Ending Record Number (ERN) ....... 16, 25 
ENTER detection . . . . . . . . . . . . . . . . . . . 29-32 
Error 

codes and messages ......... 193-197 
dictionary . . . . . . . . . . . . . . . . . . . . . . . . . 6 

@ERROR ............................ 81 
@~IT ............................... ~ 
Extended Command Interpreter ..... 84, 215 
@FEXT .............................. 83 
File 

access ............................ 4 
descriptions, TRSDOS ............. 5-8 
modification . . . . . . . . . . . . . . . . . . . . . . 15 

File Control Block (FCB) ............... 23 
Files 

CREATEd ........................ 15 
device driver . . . . . . . . . . . . . . . . . . . . . . 7 
filter .............................. 7 
system (/SYS) ............ 5-6, 7-8, 19 
utility ............................. 7 

Filter templates . . . . . . . . . . . . . . . . . . . . . 40-42 
Filters ......................... 7, 8, 40-42 

example of . . . . . . . . . . . . . . . . . . . . . . . 42 
FLAGS ......................... 28, 84-86 
@FNAME ............................ 87 
@FSPEC ............................. 89 
@GET ......................... 40-42, 90 
Gran, granule 

allocation information . . . . . . . . . . . . . . 25 
definition ....................... 2, 17 
per track . . . . . . . . . . . . . . . . . . . . . 1-2, 12 

Granule Allocation Table (GAT) 
location on disk . . . . . . . . . . . . . . . . . . . . 2 

contents of . . . . . . . . . . . . . . . . . . . . 16-18 
Graphics 

characters, printing ............... 190 
codes .................... 205-06, 208 

@GTDCB ............................ 91 
@GTDCT ............................ 92 
@GTMOD ............................ 93 
Guidelines, programming ............ 27-44 
Hash code ......................... 15, 18 
Hash Index Table (HIT) 

location on disk . . . . . . . . . . . . . . . . . . . . 2 
explanation of . . . . . . . . . . . . . . . . . 18-19 

@HDFMT ............................ 94 
@HEXDEC ........................... 95 
@HEX8 .............................. 96 
@HEX16 ............................. 97 
@HIGH$ ............................. 98 
@ICNFG, interfacing to ............. 32-33 
Immediate Execution Program ......... 215 
@INIT ................................ ~ 
Initialization configuration 

vector . . . . . . . . . . . . . . . . . . . . . . . . 32-33 
Interrupt tasks . . . . . . . . . . . . . . . . . . . . . . 34-36 
@IPL ............................... 100 
Job Control Language (JCL) .......... 6, 28 
@KBD .............................. 101 
@KEY .............................. 102 
Keyboard codes . . . . . . . . . . . . . . . . . . . 211-12 
@KEVIN ............................ 103 
KFLAG$ .............................. 29 
@KITSK, interfacing to . . . . . . . . . . . . . . 33-34 
@KLTSK ............................ 104 
Library commands . . . . . . . . . . . . . . . . . . . . . 28 

technical information on ........ 189-91 
@LOAD ............................. 105 
@LOC .............................. 106 
@LOF .............................. 107 
LOG utility . . . . . . . . . . . . . . . . . . . . . . . . . . . 190 
@LOGER ........................... 108 
Logical Record Length (LAL) ........ 15, 24 
@WGITT ........................... 1~ 
Memory banks - see RAM banks 
Memory header .................... 10, 27 
Memory map . . . . . . . . . . . . . . . . . . . . . . . . . 199 
Minimum configuration disk . . . . . . . . . . . . . . 7 
Modification date . . . . . . . . . . . . . . . . . . . . . . 15 
@MSG .............................. 110 
@MUL8 ............................. 111 
@MUL16 ............................ 112 
Next Record Number (NAN) ............ 24 

Software 218 

0 



• 

) 

Index 
Subject Page Subject Page 

NIL device ............................. 9 
@OPEN ............................. 113 
Overlays, system .................. 5-6, 19 
@PARAM ........................ 114-15 
Password 

for TRSDOS files . . . . . . . . . . . . . . . . . . 8 
protection levels ............... 14, 24 

@PAUSE ............................ 116 
PAUSE detection . . . . . . . . . . . . . . . . . . . 29-32 
@PEOF ............................. 117 
@POSN ............................. 118 
@PRINT ............................ 119 
Printing Graphics Characters . . . . . . . . . . 190 
Programming Guidelines ............ 27-44 
Protection Levels ... • . . . . . . . . . . . . 14, 24, 27 
@PRT .............................. 120 
@PUT ........................ 40-42, 121 
RAM Banks 

switching . . . . . . . . . . . . . . . . . . . . . . 36-39 
use of . . . . . . . . . . . . . . . . . . . . . . . . 50-51 

@RAMDIR .......................... 122 
@RDHDR ........................... 123 
@RDSEC ........................... 124 
@RDSSC ........................... 125 
@RDTRK ............................ 126 
@READ ............................. 127 
Record 

length .................... 3-4, 15, 24 
logical and physical ............... 3-4 
numbers .......................... 4 
processing . . . . . . . . . . . . . . . . . . . . . . . . 4 
spanning ......................... 3-4 

@REMOV ........................... 128 
@RENAM ........................... 129 
Restart Vectors ( RST s) . . . . . . . . . . . . . . . . . 29 
Return Code (RC) ..................... 28 
@REW .............................. 130 
@RMTSK ........................... 131 
@RPTSK ............................ 132 
@RREAD ........................... 133 
RS-232 

initializing . . . . . . . . . . . . . . . . . . . . . . . . 32 
COM driver for . . . . . . . . . . . . . . . . . 43-44 

@RSLCT ............................ 134 
@ASTOR ............................ 135 
@RUN .............................. 136 
@RWRIT ............................ 137 
Sample Programs .. . . .. .. .. . . . . . .. 160-83 

A ............................... 161 
B ............................... 163 

C .............................. 1~ 
D .............................. 1~ 
E ............................... 177 
F ............................... 178 
G .............................. 187 

Sectors 
per cylinder ................... 14, 19 
per granule ................... 1-2, 12 

@SEEK ............................. 138 
@SEEKSC .......................... 139 
@SKIP .............................. 140 
@SLCT ............................. 141 
@SOUND ........................... 142 
Special Character Codes .... 206-07, 209-10 
Stack handling . . . . . . . . . . . . . . . . . . . . . . . . 28 
Step rate .. .. . . . . .. . . . . .. . . . . . . . . . . .. . 11 

changing . . . . . . . . . . . . . . . . . . . . . . . . 189 
@STEPI ............................. 143 
Supervisor calls (SVCs) 

calling procedure . . . . . . . . . . . . . . . . . . 45 
lists of .......... 46-47, 155-57, 158-59 
program entry and 

return conditions . . . . . . . . . . . . . . . . 45 
sample programs using . . . . . . . 160-183 
using . . . . . . . . . . . . . . . . . . . . . . . . 45-183 

SYS files ..................... 5-6, 7-8, 19 
System 

files ..................... 5-6, 7-8, 19 
overlays . . . . . . . . . . . . . . . . . . . . . 5-6, 19 

Task 
interrupt level, adding .............. 49 
slots . . . . . . . . . . . . . . . . . . . . . . 34, 35, 49 

Task Control Block (TCB) ........ 34, 35, 49 
Vector Table (TCBVT) .......... 34, 35 

Task processor, interfacing to ........ 34-36 
@TIME .............................. 144 
TRSDOS 

converting to Version 6 . . . . . . . . . 27-28 
error messages and codes . . . . . 193-97 
file descriptions ................... 5-8 
technical information on 

commands and utilities ...... 189-91 
TYPE code . . . . . . . .. . . . . .. . . . . . . . . . .. . 23 
@VDCTL . . . . . . . .. . .. . . . .. . .. . . .. . 145-46 
@VER .............................. 147 
Version, operating system .............. 17 
Visibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 
@VRSEC ........................... 148 
WAIT value, changing ................. 190 
@WEOF ............................ 149 

Software 219 



Index 
Subject Page Subject Page 

@WHERE ........................... 150 @WRSEC ........................... 152 
@WRITE ............................ 151 @WRSSC ........................... 153 
Write Protect . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 @WRTRK ........................... 154 

C 

• 
Software 220 



Index 
Subject Page Subject Page 

.. 
Software 221 



RADIO SHACK, A DIVISION OF TANDY CORPORATION 

U.S.A.: FORT WORTH, TEXAS 76102 
CANADA: BARRIE, ONTARIO L4M 4W5 

AUSTRALIA 

91 KURRAJONG AVENUE 
MOUNT DRUITT, N.S.W. 2770 

S-L/3-85 

TANDY CORPORATION 
BELGIUM 

PARC INDUSTRIEL 
5140 NANINNE (NAMUR) 

U. K. 

BILSTON ROAD WEDNESBURY 
WEST MIDLANDS WS10 7JN 

Printed in U.S.A. 

0 


